Menu

Blog

Archive for the ‘nanotechnology’ category: Page 97

Dec 4, 2021

Researchers Capture Electron Transfer Image in Electrocatalysis Process

Posted by in categories: chemistry, nanotechnology, physics

The involvement between electron transfer (ET) and catalytic reaction at electrocatalyst surface makes electrochemical process challenging to understand and control. How to experimentally determine ET process occurring at nanoscale is important to understand the overall electrochemical reaction process at active sites.

Recently, a research group led by Prof. LI Can and Prof. FAN Fengtao from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) captured the electron transfer imaging in electrocatalysis process.

This study was recently published in the journal Nano Letters.

Dec 4, 2021

Immune system-stimulating nanoparticle could lead to more powerful vaccines

Posted by in categories: biotech/medical, engineering, nanotechnology

A common strategy to make vaccines more powerful is to deliver them along with an adjuvant — a compound that stimulates the immune system to produce a stronger response.

Researchers from MIT, the La Jolla Institute for Immunology, and other institutions have now designed a new nanoparticle adjuvant that may be more potent than others now in use. Studies in mice showed that it significantly improved antibody production following vaccination against HIV, diphtheria, and influenza.

“We started looking at this particular formulation and found that it was incredibly potent, better than almost anything else we had tried,” says Darrell Irvine, the Underwood-Prescott Professor with appointments in MIT’s departments of Biological Engineering and Materials Science and Engineering; an associate director of MIT’s Koch Institute for Integrative Cancer Research; and a member of the Ragon Institute of MGH, MIT, and Harvard.

Dec 2, 2021

Magnetism generated in 2D organic material

Posted by in categories: nanotechnology, particle physics

A 2D nanomaterial consisting of organic molecules linked to metal atoms in a specific atomic-scale geometry shows non-trivial electronic and magnetic properties due to strong interactions between its electrons.

A new study, published today, shows the emergence of magnetism in a 2D organic material due to strong electron-electron interactions; these interactions are the direct consequence of the material’s unique, star-like atomic-scale structure.

This is the first observation of local magnetic moments emerging from interactions between electrons in an atomically thin 2D organic material.

Nov 29, 2021

Corny Lithium-Ion Batteries Could Hold Quadruple the Charge

Posted by in categories: chemistry, energy, nanotechnology, sustainability, transportation

The extra juice comes from a secret ingredient…corn starch.


Could a simple materials change make electric car batteries able to four times more energy? Scientists in South Korea think so. In a new paper in the American Chemical Society’s Nano Letters, a research team details using silicon and repurposed corn starch to make better anodes for lithium ion batteries.

This team is based primarily in the Korea Institute of Science and Technology (KIST), where they’ve experimented with microemulsifying silicon, carbon, and corn starch into a new microstructured composite material for use as a battery anode. This is done by mixing silicon nanoparticles and corn starch with propylene gas and heating it all to combine.

Continue reading “Corny Lithium-Ion Batteries Could Hold Quadruple the Charge” »

Nov 29, 2021

New nanoscopy tool reveals previously invisible colorful nano-world

Posted by in categories: nanotechnology, quantum physics

“It is like using your thumb to control the water spray from a hose,” said Ming Liu, associate professor in UC Riverside’s Marlan. “You know how to get the desired spraying pattern by changing the thumb position, and likewise, in the experiment, we read the light pattern to retrieve the details of the object blocking the five nm-sized light nozzles.”

The light is then focused into a spectrometer, where it forms a tiny ring shape. The researchers can formulate the absorption and scattering images with colors by scanning the probe over an area and recording two spectra for each pixel.

The team expects the new nano-imaging technology can be an important tool to help the semiconductor industry make uniform nanomaterials with consistent properties for use in electronic devices. The new full-color nano-imaging technique could also be used to improve understanding of catalysis, quantum optics, and nanoelectronics.

Nov 28, 2021

‘Squeezed’ Light Can Give Nano-Imaging a Much Needed Boost

Posted by in categories: materials, nanotechnology

It’s one thing to produce nano-scale materials, but it’s an entirely different thing imaging them.

Nanomaterials have many applications, especially in electronics, but they have one issue: They are so small that they don’t reflect enough light to show fine details, such as colors, even with the aid of the most powerful microscopes.

Now, researchers from UC Riverside may have come up with a solution. They have conceived of an imaging technology that compresses lamp light into a nanometer-sized spot, holding that light at the end of a silver nanowire. This allows it to reveal previously invisible details such as colors.

Continue reading “‘Squeezed’ Light Can Give Nano-Imaging a Much Needed Boost” »

Nov 27, 2021

Researchers develop multicomponent nanopore machine that approaches single molecule protein sequencing

Posted by in categories: materials, nanotechnology

A team of researchers at the University of Groningen has developed a multicomponent nanopore machine that approaches single molecule protein sequencing—it uses a design that allows for unfolding, threading and degrading a desired protein. In their paper published in the journal Nature Chemistry, the group describes their nanopore machine, how it works and how close it comes to allowing single molecule protein sequencing. Yi-Lun Ying with Nanjing University has published a News & Views piece in the same journal issue outlining the purpose of macromolecular machines and the work done by the team with this new effort.

It has been a goal of chemists for many years to create a machine of some type that would allow easy analysis of individual , similar to devices that have been created to sequence nucleic acids. Such efforts have been stymied by the high degree of complexity of protein molecules. In this new effort, the researchers have come close to achieving that goal. They have built a tiny (900 kDa) multicomponent nanopore machine that is capable of unfolding a given protein and then presenting it to a protein nanopore (a tiny cavity or pore).

The researchers built the machine by placing a chopper of sorts on top of material borrowed from a bacterium. The material works as a tunnel, directing bits from the chopper through a membrane that was designed to mimic the surface of a cell. The chopper breaks a protein into fragmented bits that are easily exported through the . As they do so, the fragments impact the flow of charged molecules, which leads to the generation of an electrical signal.

Nov 26, 2021

Spiderweb as inspiration for creating of one of the world’s most precise microchip sensors

Posted by in categories: cosmology, internet, nanotechnology, quantum physics, robotics/AI

A team of researchers from TU Delft managed to design one of the world’s most precise microchip sensors. The device can function at room temperature—a ‘holy grail’ for quantum technologies and sensing. Combining nanotechnology and machine learning inspired by nature’s spiderwebs, they were able to make a nanomechanical sensor vibrate in extreme isolation from everyday noise. This breakthrough, published in the Advanced Materials Rising Stars Issue, has implications for the study of gravity and dark matter as well as the fields of quantum internet, navigation and sensing.

One of the biggest challenges for studying vibrating objects at the smallest scale, like those used in sensors or quantum hardware, is how to keep ambient thermal noise from interacting with their fragile states. Quantum hardware for example is usually kept at near absolute zero (−273.15°C) temperatures, and refrigerators cost half a million euros apiece. Researchers from TU Delft created a web-shaped microchip sensor that resonates extremely well in isolation from room temperature noise. Among other applications, their discovery will make building quantum devices much more affordable.

Nov 25, 2021

Implantable Electronics: Can Nanotechnology Help?

Posted by in categories: habitats, nanotechnology

Speaker: Swarup Bhunia.

http://www.eecs.case.edu/doku.php?id=eecs: home: seminar_series:upcoming_seminars.

Nov 21, 2021

The thinnest CD-RW: Atomic-scale data storage possible

Posted by in categories: computing, encryption, nanotechnology

Using a focused laser beam, scientists can manipulate properties of nanomaterials, thus ‘writing’ information onto monolayer materials. By this means, the thinnest light disk at atomic level was demonstrated.

The bottleneck in atomic-scale area may be broken by a simple technique, thanks to recent innovative studies conducted by scientists from Nanjing Normal University (NJNU) and Southeast University (SEU).

Through a simple, efficient and low-cost technique involving the focused laser and ozone treatment, the NJNU and SEU research teams, leading by Prof. Hongwei Liu, Prof. Junpeng Lu and Prof. Zhenhua Ni demonstrated that the photoluminescence (PL) emission of WS2 monolayers can be controlled and modified, and consequently, it works as the thinnest light disk with rewritable data storage and encryption capability.

Page 97 of 257First949596979899100101Last