Toggle light / dark theme

Could ‘pausing’ cell death be the final frontier in medicine on Earth and beyond?

The process of necrosis, a form of cell death, may represent one of the most promising ways to change the course of human aging, disease and even space travel, according to a new study by researchers at UCL, drug discovery company LinkGevity and the European Space Agency (ESA).

In the study, published in Oncogene, an international team of scientists and clinicians explore the potential of —when cells die unexpectedly as a result of infection, injury or disease—to reshape our understanding and treatment of age-related conditions.

Challenging prevailing views, the paper brings together evidence from cancer biology, , kidney disease, and space health to argue that necrosis is not merely an endpoint, but a key driver of aging that presents an opportunity for intervention.

FMRI analysis method designed for children finds unexpected brain health improvements in aging women

A research team led by the Borzage Laboratory at Children’s Hospital Los Angeles tested a new functional magnetic resonance imaging (fMRI) analysis method to measure cerebrovascular health in aging adults. What they found was unexpected and validated the usefulness of this method for measuring neurovascular aging in childhood diseases.

The researchers measured the cerebrovascular reactivity of the brains of 53 men and women between the ages of 51 to 83. Cerebrovascular reactivity is the ability of the blood vessels in the brain to dilate in response to a stimulus. The fMRI method they used—known as blood oxygen level dependent-cerebrovascular reactivity (BOLD-CVR)—measures the ability of the brain’s vessels to flexibly regulate blood flow in response to changes in carbon dioxide levels.

“How well the vessels react reveals a lot about your brain health,” says lead author Bethany Sussman, Ph.D., Research Scientist, Neonatology, at CHLA. “If a certain part of the brain can’t perform that function very well, that area is likely more susceptible to stroke.

/* */