Toggle light / dark theme

A new stroke-healing gel created by UCLA researchers helped regrow neurons and blood vessels in mice whose brains had been damaged by strokes. The finding is reported May 21 in Nature Materials.

“We tested this in laboratory mice to determine if it would repair the brain and lead to recovery in a model of stroke,” said Dr. S. Thomas Carmichael, professor of neurology at the David Geffen School of Medicine at UCLA and co-director of the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research. “The study indicated that new brain tissue can be regenerated in what was previously just an inactive brain scar after stroke.”

The results suggest that such an approach could some day be used to treat people who have had a stroke, said Tatiana Segura, a former professor of chemical and biomolecular engineering at UCLA who collaborated on the research. Segura is now a professor at Duke University.

Brain cells receive sensory inputs from the outside world and send signals throughout the body telling organs and muscles what to do. Although neurons comprise only 10% of brain cells, their functional and genomic integrity must be maintained over a lifetime. Most dividing cells in the body have well-defined checkpoint mechanisms to sense and correct DNA damage during DNA replication.

Neurons, however, do not divide. For this reason, they are at greater risk of accumulating damage and must develop alternative repair pathways to avoid dysfunction. Scientists do not understand how neuronal DNA damage is controlled in the absence of replication checkpoints.

A recent study led by Cynthia McMurray and Aris Polyzos in Lawrence Berkeley National Laboratory’s (Berkeley Lab’s) Molecular Biophysics and Integrated Bioimaging Division addressed this knowledge gap, shedding light on how DNA damage and repair occur in the brain. Their results suggest that DNA damage itself serves as the checkpoint, limiting the accumulation of genomic errors in cells during natural aging.

This video provides a progress update on cutting-edge research exploring epigenetic reprogramming and small molecule cocktails for cellular rejuvenation.

Dr David Sinclair delve into the latest studies on how these approaches can potentially reverse the effects of aging at the cellular level. Topics covered include:

• The mechanisms of epigenetic reprogramming using Yamanaka factors. The development and testing of novel small molecule cocktails. Applications in various tissues and organs Research on reversing cellular senescence and restoring cell identity. The use of AI for high-throughput screening of potential rejuvenating compounds.
This update highlights recent advancements, challenges, and future directions in this exciting field of research.

* Credits to ARRD \& Dr David Sinclair*

Please note that the links below are affiliate links, so we receive a small commission when you purchase a product through the links. Thank you for your support!
=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=*=
☑ ProHealth, RENUE, DoNotAge, StemRegen, N1O1, NOVOS ☑ Coupon CODE: REVERSE

OpenAI says no money changed hands in the collaboration. But because the work could benefit Retro—whose biggest investor is Altman—the announcement may add to questions swirling around the OpenAI CEO’s side projects.

Last year, the Wall Street Journal said Altman’s wide-ranging investments in private tech startups amount to an “opaque investment empire” that is “creating a mounting list of potential conflicts,” since some of these companies also do business with OpenAI.

In Retro’s case, simply being associated with Altman, OpenAI, and the race toward AGI could boost its profile and increase its ability to hire staff and raise funds. Betts-Lacroix did not answer questions about whether the early-stage company is currently in fundraising mode.

What is cell senescence and inflammaging?

Featuring Matt Yousefzadeh, PhD


Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.

Fiber is a crucial component of a healthy diet, yet fewer than 10% of Americans consume the recommended daily amount. However, new research from Stanford Medicine may provide a compelling reason to increase intake of fiber-rich foods like beans, nuts, cruciferous vegetables, and avocados.

The study, recently published in Nature Metabolism

Nature Metabolism is a peer-reviewed journal published by the Nature Portfolio, focusing on high-impact research in metabolic biology. The journal covers a broad range of topics including cellular metabolism, systemic metabolism, disease, physiology, and metabolic interactions. It aims to provide insights into how metabolism influences health, disease, and aging, and serves as a platform for fundamental and translational research in metabolic science.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/