Toggle light / dark theme

Researchers at the Icahn School of Medicine at Mount Sinai have been awarded a $21 million grant from the National Institute on Aging (NIA) of the National Institutes of Health (NIH), to further advance understanding of an aging-related hormone known as follicle-stimulating hormone (FSH), including its potential role in obesity, osteoporosis, and Alzheimer’s disease. The work could lead to the development of new treatments for these and other conditions involving aging.

This is a collaborative effort with the NIA, led by Mone Zaidi, MD, PhD, Director of the Center for Translational Medicine and Pharmacology at Icahn Mount Sinai, and Clifford J. Rosen, MD, at the MaineHealth Institute for Research in Scarborough, Maine. Dr. Zaidi and Dr. Rosen are Program Directors, and principal investigators of individual projects are Anne Schafer, MD, at the University of California in San Francisco, as well as scientists at Icahn Mount Sinai, including Tony Yuen, PhD, Associate Professor and Research Director of the Center for Translational Medicine and Pharmacology, and Daria Lizneva, MD, PhD, Associate Professor of Pharmacological Sciences. Together, the investigators will work toward translating their findings into viable treatments for patients.

“We are delighted that the NIH has recognized the potential of our work by awarding this generous grant,” says Dr. Zaidi, the Mount Sinai Professor of Clinical Medicine at Icahn Mount Sinai. “Our focus for more than 25 years has been on identifying actionable targets for major public health diseases. This research offers the potential for a new drug for menopause and could also possibly help advance treatments for Alzheimer’s disease, obesity, and osteoporosis, affecting millions of people worldwide.”

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

An important update on E5.


Here we look at an attempt to replicate the amazing results with E5 from Dr Katcher’s 2020 paper by an institute that has been set up in Brazil.
Some links are affiliate links so we will earn a commission when they are used to purchase products.

If you would like to support our channel please consider joining our patreon / modernhealthspan.
Stemregen 15% discount Code MODERN https://tinyurl.com/45z968yr (Only available in the US)
Renue By Science 10% discount code MHS: https://tinyurl.com/bdew4bfs.
NMN Powder https://tinyurl.com/syc7rwkh.
DoNotAge 10% discount code MHS https://tinyurl.com/6dbvhv87
NMN https://tinyurl.com/wyzj2f3d CaAKG https://tinyurl.com/2h79stt2
Wellness Extract 10% discount Code MODERNWE Geranylgeraniol Essential http://wellnessextract.com/RICHARDWE Delta Gold Vit E
Pendulum 20% Discount Code HEALTHSPAN
Akkermansia https://pendulumtherapeutics.sjv.io/b
Metabolic Daily https://pendulumtherapeutics.sjv.io/N
n1o1 Nitric Oxide 10% discount with code Modern https://tinyurl.com/3esakm4s.
n1o1 Nitric Oxide Lozenges https://tinyurl.com/yh4rrtht.
Age-Defiance Face Cream https://tinyurl.com/4zr959zh.
OmegaQuant 5% discount Code MODERN https://omegaquant.com/shop/
Bulletproof 15% off with coupon code: HEALTHSPAN15: https://tinyurl.com/4npjk5vp.
Inner Fuel Gut support https://bulletproof.fdf2.net/PyDKDM
Omega-3 Krill Oil https://bulletproof.fdf2.net/xkdxmy.
Nuchido Time+ 20% discount of first purchase with code MODERN20 https://nuchido.com/MODERN
OneSkin 15% Discount: Code MODERN https://tinyurl.com/3t6tevj8 OS-01 Face Topical Supplement https://tinyurl.com/29c8wrr2
Neurohacker Qualia Senolytic https://tinyurl.com/22t9thrn.
TruDiagnostics 12% Discount Code MODERN TruAGE PACE https://trudiagnostic.pxf.io/oqYVMY
☕If you would like to support our channel, we’d love a coffee…thank you! https://www.buymeacoffee.com/mhealthspan.

⏲️Chapters.

🌐Links in this video.

Next in our New Year countdown, a study found that traumatic experiences during childhood may impair muscle function later in life.

Read more.


A University of Michigan study has shown that traumatic experiences during childhood may get “under the skin” later in life, impairing the muscle function of people as they age.

The study examined the function of skeletal muscle of older adults paired with surveys of adverse events they had experienced in childhood. It found that people who experienced greater childhood adversity, reporting one or more adverse events, had poorer muscle metabolism later in life. The research, led by University of Michigan Institute for Social Research scientist Kate Duchowny, is published in Science Advances.

Duchowny and her co-authors used muscle tissue samples from people participating in the Study of Muscle, Mobility and Aging, or SOMMA. The study includes 879 participants over age 70 who donated muscle and fat samples as well as other biospecimens. The participants also were given a variety of questionnaires and physical and cognitive assessments, among other tests.

Benonisdottir et al. review the genetics of reproductive traits and examine how these associate with links to health, behavior, aging and longevity as well as outcomes for offspring.

Using an AI tool, researchers at Karolinska Institutet have analyzed brain images from 70-year-olds and estimated their brains’ biological age. They found that factors detrimental to vascular health, such as inflammation and high glucose levels, are associated with an older-looking brain, while healthy lifestyles were linked to brains with a younger appearance.

The results are presented in a paper titled “Biological brain age and resilience in cognitively unimpaired 70-year-old individuals” in Alzheimer’s & Dementia.

Every year, over 20,000 people in Sweden develop some form of dementia, with Alzheimer’s disease accounting for approximately two-thirds of cases. However, the speed at which the brain ages is affected by various risk and health factors.

Furthermore, GDF-15 levels have been positively associated with the aging process. In fact, Tanaka et al. (Tanaka et al. 2018) showed that this cytokine had the strongest positive correlation with age in humans, and several reports describe higher levels of GDF-15 in older individuals (Semba et al. 2020; Doerstling et al. 2018; Liu et al. 2020). Aging is characterized by a decline in physiological function and changes in body composition, being a major risk factor for a variety of chronic diseases. As such, GDF-15 is also associated with several age-related diseases, including cardiovascular disease (Echouffo-Tcheugui et al. 2021), cancer (Wischhusen et al. 2020), metabolic syndrome (Ho et al. 2023; Carballo-Casla et al. 2022), or diabetes (Ouyang et al. 2020; Merchant et al. 2023), among others (Candia et al. 2021; Iglesias et al. 2023). In addition, it has been proposed as a biomarker for the risk of death in patients with cardiovascular conditions and an accurate all-cause mortality marker (Candia et al. 2021; Iglesias et al. 2023; Nopp et al. 2021). GDF-15 has also been positively associated with deteriorated muscle function and sarcopenia (Semba et al. 2020; Kim et al. 2022, 2020; Nakajima et al. 2019; Lee et al. 2022), a highly prevalent condition among the elderly that increases the risk of frailty (Picca et al. 2020).

It is widely accepted that human aging may be influenced by epigenetic alterations (López-Otín et al. 2023). In this sense, age biomarkers based on DNA methylation have proven useful in predicting the risk of age-related diseases and mortality (Fransquet et al. 2019). Among several developed epigenetic clocks, DNAm GrimAge has shown a higher prediction capacity of mortality and morbidity risk (Lu et al. 2022). Notably, GDF-15 is one of the markers included for the calculation of this clock (Lu et al. 2019). Thus, understanding the interplay between GDF-15 and aging can be crucial for improving the assessment of and management of age-associated conditions.

For all this, the aim of this study was to characterize the changes in circulating GDF-15 levels with age in a population of healthy individuals from the Balearic Islands and investigate its potential associations with different epigenetic and biological clocks, physical performance and other age-related biomarkers.

Mayo Clinic researchers have identified interleukin-23 receptor (IL-23R) as a significant biomarker of cellular senescence and aging in both mice and humans. Experiments show that IL-23R levels in the bloodstream increase with age and can decrease, reflecting senescent cell clearing, with senolytic therapies.

Cellular senescence occurs when cells stop dividing but do not trigger apoptosis mechanisms that would allow them to die naturally. Instead, they are stuck in a zombie-like state, where they still have the urge to feed and carry out metabolic activities, but with increasingly incoherent cell signaling and increased pro-inflammatory cytokine secretions.

Senescent cell activity has been linked to several age-related diseases, including those of the immune, cardiovascular, metabolic, pulmonary, musculoskeletal and neurological systems.

Andrew Cassy had spent his working life in a telecommunications research department until a diagnosis of Parkinson’s disease in 2010 pushed him into early retirement. Curious about his illness, which he came to think of as an engineering problem, he decided to volunteer for clinical trials.

“I had time, something of value that I could give to the process of understanding the disease and finding good treatments,” he says.

In 2024, he was accepted into a radical trial. That October, surgeons in Lund, Sweden, placed neurons that were derived from human embryonic stem (ES) cells into his brain. The hope is that they will eventually replace some of his damaged tissue.

The study is one of more than 100 clinical trials exploring the potential of stem cells to replace or supplement tissues in debilitating or life-threatening diseases, including cancer, diabetes, epilepsy, heart failure and some eye diseases. It’s a different approach from the unapproved therapies peddled by many shady clinics, which use types of stem cell that do not turn into new tissue.


More than 100 clinical trials put stem cells for regenerative medicine to the test. It’s a turning point for a field beset with ethical and political controversy.