Researchers create genetically engineered mice with human-like telomeres, allowing effects of interventions to be observed in mammals.
Category: life extension – Page 11
Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD
Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.
Clearly Filtered Water Filter: https://get.aspr.app/SHoPY
Dr. Masayo Takahashi graduated from Kyoto University’s Faculty of Medicine in 1986. In 1992, she completed her Ph.D. in Visual Pathology at Kyoto University’s Graduate School of Medicine. She first worked as a clinician, but later became interested in research following her studies in the United States in 1995. In 2005, her lab became the first in the world to successfully differentiate neural retina from embryonic stem cells. She is currently the project leader of the Laboratory for Retinal Regeneration at the RIKEN Center for Developmental Biology (CDB).
Recently in Japan they restored vision of three people using puliportent stem cells.
Then, in March 2017, Dr. Takahashi and her team made another important step forward. While the 2014 surgery had used cells generated from the patient’s own tissues, Dr. Takahashi and her team succeeded this time in the world’s first transplantation of RPE cells generated from iPS cells that originated from another person (called “allogeneic transplantation”) to treat a patient with wet-type AMD. Currently, the patient is being monitored for the possibility of rejection, which is a risk of allogeneic transplantation. Regarding the significance of the operation, Dr. Takahashi explains that “allogeneic transplantation substantially reduces the time and cost required in producing RPE cells, creating opportunities for even more patients to undergo surgeries. Hearing patients’ eager expectations firsthand when working as a clinician has also been a significant motivation.”
Dr. Takahashi’s team is currently making preparations for clinical studies that will target retinitis pigmentosa, a hereditary eye disease, by transplanting photoreceptor cells. “Having my mind set on wanting to see applications of iPS cells in treatments as quickly as possible, I have been actively involved in the creation of the regulations for their practical applications in regenerative medicine. In Japan, where clinical studies and clinical trials can be conducted at the same time, there is significant merit in the fact that research can be carried out by doctors who also work in medical settings. This helps ensure that they proceed with a sense of responsibility and strong ethics. Our advanced clinical studies have attracted the attention of researchers working in regenerative medicine in various countries. I intend to maintain a rapid pace of research so that we can treat the illnesses of as many patients as possible.”
Nicotinamide Riboside Supplementation Alleviates Testicular Aging Induced by Disruption of Qprt‐Dependent NAD+ De Novo Synthesis in Mice
Posted in biotech/medical, life extension, sex | Leave a Comment on Nicotinamide Riboside Supplementation Alleviates Testicular Aging Induced by Disruption of Qprt‐Dependent NAD+ De Novo Synthesis in Mice
In this study, we have demonstrated the crucial role of NAD+ homeostasis, particularly through the de novo synthesis pathway mediated by Qprt, in maintaining spermatogenesis with age. The deletion of Qprt led to progressive declines in NAD+ levels, particularly after 6 months of age, which were associated with significant defects in germ cell survival and mitochondrial function in spermatocytes. These disruptions manifested as impaired progression through meiosis, defective DNA double-strand break repair, and abnormal meiotic sex chromosome inactivation. Our findings also highlight the therapeutic potential of NAD+ precursor supplementation, as nicotinamide riboside effectively rescued the observed spermatogenic abnormalities in Qprt-deficient mice, emphasizing the importance of NAD+ in reproductive health and aging.
NAD+ can be synthesized through three pathways: the Preiss-Handler pathway, the salvage pathway, and the de novo pathway (Liu et al. 2018 ; Harjes 2019). In the de novo pathway, the essential amino acid tryptophan serves as a substrate, with Qprt catalyzing the formation of nicotinic acid mononucleotide, which is subsequently converted into NAD+ via a series of enzymatic reactions in the Preiss-Handler pathway. Coordinated regulation of these three pathways is crucial for maintaining intracellular NAD+ levels, which are essential for cellular function, a decline in NAD+ levels can lead to various pathological and physiological conditions (Minhas et al. 2019 ; Zhang et al. 2019a). In this study, we identified that Qprt, the rate-limiting enzyme in the NAD+ de novo synthesis pathway, is predominantly expressed in spermatocytes within the testes.
An international team of scientists, including researchers from Harvard University and the University of Zurich, analyzed clinical trial results 777 elderly Swiss adults to test the potential anti-aging benefits of supplements and exercise.
While there’s no perfect way to measure biological aging, the researchers used tools that help measure age-related decline in the cells and organs, including factors like brain health and heart health.
They looked at participants who underwent one of eight longevity treatments over three years, including exercising and supplementing omega-3s, vitamin D, or both.
Josh Mitteldorf suggests new protocol for experimental young plasma therapy.
Scientists explore concentrated plasma infusions for stronger anti-ageing effects.
01-Feb-2025Key points from article :
Scientists have long observed the remarkable rejuvenation effects of young plasma in ageing rats, but translating these findings into human therapies has been slow due to intellectual property barriers and funding challenges. In the meantime, a niche industry has emerged in Texas, where ageing individuals can receive plasma infusions from young donors for tens of thousands of dollars. However, these treatments, which replace about 35% of a patient’s plasma, fall short of the dramatic regeneration seen in laboratory animals. Researchers suspect that the exosome dosages in these human procedures are too low to match the full rejuvenation potential seen in rats.
To address this, a new approach suggests concentrating young plasma by removing excess water, allowing for higher doses without overloading the circulatory system. Freeze-drying plasma, a long-standing technology, could be adapted to reconstitute plasma at three or more times its normal strength. However, modifications would be necessary—such as removing platelets to avoid clotting risks and adjusting albumin levels for safety.
Outer Space, Inner Space, and the Future of Networks.
Synopsis: Does the History, Dynamics, and Structure of our Universe give any evidence that it is inherently “Good”? Does it appear to be statistically protective of adapted complexity and intelligence? Which aspects of the big history of our universe appear to be random? Which are predictable? What drives universal and societal accelerating change, and why have they both been so stable? What has developed progressively in our universe, as opposed to merely evolving randomly? Will humanity’s future be to venture to the stars (outer space) or will we increasingly escape our physical universe, into physical and virtual inner space (the transcension hypothesis)? In Earth’s big history, what can we say about what has survived and improved? Do we see any progressive improvement in humanity’s thoughts or actions? When is anthropogenic risk existential or developmental (growing pains)? In either case, how can we minimize such risk? What values do well-built networks have? What can we learn about the nature of our most adaptive complex networks, to improve our personal, team, organizational, societal, global, and universal futures? I’ll touch on each of these vital questions, which I’ve been researching and writing about since 1999, and discussing with a community of scholars at Evo-Devo Universe (join us!) since 2008.
For fun background reading, see John’s Goodness of the Universe post on Centauri Dreams, and “Evolutionary Development: A Universal Perspective”, 2019.
John writes about Foresight Development (personal, team, organizational, societal, global, and universal), Accelerating Change, Evolutionary Development (Evo-Devo), Complex Adaptive Systems, Big History, Astrobiology, Outer and Inner Space, Human-Machine Merger, the Future of AI, Neuroscience, Mind Uploading, Cryonics and Brain Preservation, Postbiological Life, and the Values of Well-Built Networks.
He is CEO of Foresight University, founder of the Acceleration Studies Foundation, and co-founder of the Evo-Devo Universe research community, and the Brain Preservation Foundation. He is editor of Evolution, Development, and Complexity (Springer 2019), and Introduction to Foresight: Personal, Team, and Organizational Adaptiveness (Foresight U Press 2022). He is also author of The Transcension Hypothesis (2011), the proposal that universal development guides leading adaptive networks increasingly into physical and virtual inner space.
A talk for the ‘Stepping into the Future‘conference (April 2022).
A biomaterial that can mimic certain behaviors within biological tissues could advance regenerative medicine, disease modeling, soft robotics and more, according to researchers at Penn State.
Materials created up to this point to mimic tissues and extracellular matrices (ECMs)—the body’s biological scaffolding of proteins and molecules that surrounds and supports tissues and cells—have all had limitations that hamper their practical applications, according to the team. To overcome some of those limitations, the researchers developed a bio-based, “living” material that encompasses self-healing properties and mimics the biological response of ECMs to mechanical stress.
They published their results in Materials Horizons, where the research was also featured on the cover of the journal.
German scientists have created lab-grown “patches” of heart muscle tissue derived from pluripotent stem cells. Following a success with rhesus monkeys, they have obtained approval for a human trial [1].
Wear and tear
As one of the most hard-working tissues in the body, the heart muscle is subject to incessant wear and tear due to aging and various health conditions. Unsurprisingly, heart failure is one of the most common age-related causes of death.
Cryonic freezing offers a pathway to reap future medical technologies today by preserving someone for future restoration, but what would the impact of this technology be on civilization?
Get a free month of Curiosity Stream: https://curiositystream.com/isaacarthur.
Join this channel to get access to perks:
/ @isaacarthursfia.
Visit our Website: http://www.isaacarthur.net.
Join Nebula: https://go.nebula.tv/isaacarthur.
Support us on Patreon: / isaacarthur.
Support us on Subscribestar: https://www.subscribestar.com/isaac-a… Group: / 1,583,992,725,237,264 Reddit:
/ isaacarthur Twitter:
/ isaac_a_arthur on Twitter and RT our future content. SFIA Discord Server:
/ discord Credits: Cryonics: Frozen Civilizations Science & Futurism with Isaac Arthur Episode 273; January 14, 2021 Written, Produced & Narrated by Isaac Arthur Editors: Jason Burbank Jerry Guern Keith Blockus Cover Art: Jakub Grygier https://www.artstation.com/jakub_grygier Graphics: Jeremy Jozwik https://www.artstation.com/zeuxis_of_… Music: Miguel Johnson https://migueljohnson.bandcamp.com.
Facebook Group: / 1583992725237264
Reddit: / isaacarthur.
Twitter: / isaac_a_arthur on Twitter and RT our future content.
SFIA Discord Server: / discord.
Credits:
Cryonics: Frozen Civilizations.
Science & Futurism with Isaac Arthur.
Episode 273; January 14, 2021
Written, Produced & Narrated by Isaac Arthur.
Editors: