Toggle light / dark theme

Reclassification of Gene Variants Linked to Hereditary Colorectal Cancer

Colorectal cancer (CRC) remains one of the most clinically challenging malignancies facing our public health system. CRC accounts for the second and third most common cancer in males and females, respectively. In addition, CRC represents one of the most deadly cancers, expected to result in over 50,000 mortalities in 2024.

Hereditary colorectal cancer (HCRC) occurs when a parent passes a cancer gene to a child. Unfortunately, we have not identified a single gene that causes the disease. Hereditary CRC syndromes, such as hereditary non-polyposis colorectal cancer (HNPCC; also known as Lynch syndrome) and familial adenomatous polyposis (FAP), describe a group of genetic diseases that confer a high risk of developing CRC. As our knowledge has expanded, we have learned about a growing number of genetic variants in the genes that predispose carriers to CRC. However, the precise role of some variants in the development of CRC cancer remains unclear. Uncovering more information about these variants, called variants of uncertain significance.

As our knowledge has expanded, we have learned about a growing number of genetic variants in the genes which predispose carriers to CRC. However, the precise role of some variants in the development of CRC cancer remains unclear. Uncovering more information about these variants, called variants of uncertain significance (VUS), can aid in optimizing screening and surveillance programs.

Brain Control with Light — Development and Application: Viviana Gradinaru at TEDxCaltech

Viviana Gradinaru, an assistant professor of biology at Caltech, discovered her passion for neuroscience as an undergraduate at Caltech, her alma mater. Viviana did her Ph.D. work with Karl Deisseroth at Stanford University where she played an instrumental role in the early development and applications of optogenetics, a research area concerned with the perturbation of neuronal activity via light-controlled ion channels and pumps. More information on her own lab at Caltech can be found at glab.caltech.edu. Viviana is also interested in entrepreneurship for better human health and has co-founded a company, Circuit Therapeutics, based on optogenetics.

In the spirit of ideas worth spreading, TEDx is a program of local, self-organized events that bring people together to share a TED-like experience. At a TEDx event, TEDTalks video and live speakers combine to spark deep discussion and connection in a small group. These local, self-organized events are branded TEDx, where x = independently organized TED event. The TED Conference provides general guidance for the TEDx program, but individual TEDx events are self-organized.* (*Subject to certain rules and regulations)\ \ .

On January 18, 2013, Caltech hosted TEDxCaltech: The Brain, a forward-looking celebration of humankind’s quest to understand the brain, by exploring the past, present and future of neuroscience. Visit TEDxCaltech.com for more details.

Glioblastoma treatment shows promise in mouse study

Memorial Sloan Kettering Cancer Center-led researchers have identified a small molecule called gliocidin that kills glioblastoma cells without damaging healthy cells, potentially offering a new therapeutic avenue for this aggressive brain tumor.

Glioblastoma remains one of the most lethal primary brain tumors, with current therapies failing to significantly improve patient survival rates. Glioblastoma is difficult to treat for several reasons. The tumor consists of many different types of cells, making it difficult for treatments to target them all effectively.

There are few genetic changes in the cancer for drugs to target, and the tumor creates an environment that weakens the body’s immune response against it. Even getting medications near targets in the brain is challenging because the protective blocks entry for most potential drug treatments.

Parasite genome analysis provides a new approach to predicting malaria drug resistance

Researchers at University of California San Diego analyzed the genomes of hundreds of malaria parasites to determine which genetic variants are most likely to confer drug resistance.

The findings, published in Science, could help scientists use machine learning to predict antimalarial and more effectively prioritize the most promising experimental treatments for further development. The approach could also help predict treatment resistance in other , and even cancer.

“A lot of drug resistance research can only look at one chemical agent at a time, but what we’ve been able to do here is create a roadmap for understanding antimalaria drug resistance across more than a hundred different compounds,” said Elizabeth Winzeler, Ph.D., a professor at UC San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences and the Department of Pediatrics at UC San Diego School of Medicine.

Red Light Therapy Reduces Blood Glucose: Glen Jeffery, PhD

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Oral Microbiome: https://www.bristlehealth.com/?ref=michaellustgarten.

Scientists discover shared genetic foundations between musical rhythm and human language

In a study published Nov. 21 in the journal Nature Human Behaviour, researchers have uncovered significant genetic connections between human language abilities and musical rhythm skills, providing new insights into the biological underpinnings of these fundamental human traits.

The study brought together leading experts in the areas of musicality genetics and language genetics from Vanderbilt University Medical Center in close collaboration with researchers at the Max Planck Institute for Psycholinguistics in the Netherlands.

The study revealed overlapping between rhythm-related skills and language-related traits, including dyslexia. Multiple datasets were used from over 1 million individuals. By applying advanced multivariate methods, the researchers were able to identify common genetic factors and explore their biological and evolutionary significance.

Molecular and genetic insights into human ovarian aging from single-nuclei multi-omics analyses

The molecular and cellular mechanisms underlying ovarian aging are incompletely understood. Here the authors provide single-nuclei RNA and ATAC-seq of human ovarian tissue from four young and four reproductively aged donors, revealing coordinated transcriptomic and epigenomic changes across cell types and highlighting a role for mTOR signaling in reproductive aging.

Small Molecule Found to Weaken Immune Cells in Lung Cancer

To maintain a healthy immune system, doctors advise patients to take vitamins and minerals. Vitamins have many functions that benefit the body, including resisting infection, energy boost, aiding in blood clotting, improving brain function, generation of red blood cells, promoting a healthy gut microbiome, improving wound healing, preventing eye deterioration, and developing strong bones. We can get vitamins from various sources, including orange juice, which is rich in vitamin C, folate, and potassium. Physicians often recommend supplements for patients low on specific vitamins. However, dysregulation of vitamins can weaken the immune system and promote overall bad health. One vitamin in particular that helps maintain cellular function includes B12. This vitamin is essential to generate DNA and red blood cells, and aids in nerve function, energy conversion, and protein metabolism. When a patient has a B12 deficiency it can result in muscle weakness, numbness in hands and feet, difficulty walking, nausea, loss of appetite, and unintentional weight loss. In addition, it can allow the buildup of a small molecule known as methylmalonic acid (MMA).

In healthy tissues, vitamin B12 helps break down MMA. In B12 deficient patients, MMA is increased and can be measured through blood or urine samples. Methylmalonic acid is produced when proteins in your muscle, known as amino acids, are broken down. Tests to determine B12 deficiency or a genetic disorder are done by physicians at birth and after the appearance of symptoms related to B12 deficiency. Interestingly, a group of scientists have discovered a new deleterious role of MMA in lung carcinoma.

A recent publication from Oncogene, by Dr. Ana P. Gomes and others, demonstrated that MMA in aged patients weakens immune cell function and promotes lung cancer progression. Gomes is a professor of molecular oncology at Moffitt Cancer Center in Florida. Her work specifically focuses on understanding metabolic changes as we age and how this change in metabolism influences cancer risk.

/* */