Research shows that 20th-century commercial whaling has left a mark on the genetic diversity of surviving whales, emphasizing the importance of understanding and conserving their genetic history.
Commercial whaling in the 20th century decimated populations of large whales but also appears to have had a lasting impact on the genetic diversity of today’s surviving whales, new research from Oregon State University shows.
Grass may transfer genes from their neighbors in the same way genetically modified crops are made, a new study has revealed.
Research, led by the University of Sheffield, is the first to show the frequency at which grasses incorporate DNA from other species into their genomes through a process known as lateral gene transfer.
The stolen genetic secrets give them an evolutionary advantage by allowing them to grow faster, bigger or stronger and adapt to new environments quicker.
Tina Woods, serving as Healthy Longevity Champion for the National Innovation Center for Aging, sets forth her vision for a blueprint for healthy longevity for all. Her emphasis is on reaping the “longevity dividend” and achieving five additional years of healthy life expectancy while reducing health and wellbeing inequality. Woods elaborates on the role of emerging technologies like AI, machine learning, and advanced data analysis in comprehending and influencing biological systems related to aging. She also underscores the crucial role of lifestyle changes and the consideration of socio-economic factors in increasing lifespan. The talk also explores the burgeoning field of emotion AI and its application in developing environments for better health outcomes, with a mention of “Longevity Cities,” starting with a trial in Newcastle. In closing, Woods mentions the development of a framework for incentivizing businesses through measurement of their contribution to health in three areas: workforce health, consumer health through products and services, and community health. Woods envisions a future where businesses impacting health negatively are disincentivized, and concludes with the hope that the UK’s healthy longevity innovation mission can harness longevity science and data innovation to improve life expectancy.
00:00:00 — Introduction, National Innovation Center for Aging. 00:00:56 — Discussion on stagnating life expectancy and UK’s life sciences vision. 00:03:50 — Technological breakthroughs (including AI) in analyzing biological systems. 00:06:22 — Understanding what maintains health & wellbeing. 00:08:30 — Hype, hope, important of purpose. 00:10:00 — Psychological aging and “brain capital.“ 00:13:15 — Ageism — a barrier to progress in the field of aging. 00:15:46 — Health data, AI and wearables. 00:18:44 — Prevention is key, Health is an asset to invest in. 00:19:13 — Longevity Cities. 00:21:19 — Business for Health and industry incentives. 00:23:13 — Closing.
WEHI researchers have identified a small change in the sequence of a particular gene that increases the likelihood of inflammation in carriers. | Genetics And Genomics.
The investigators carried out animal trials with the engineered AsCas12f system, partnering it with other genes and administering it to live mice. The encouraging results indicated that engineered AsCas12f has the potential to be used for human gene therapies, such as treating hemophilia.
The team discovered numerous potentially effective combinations for engineering an improved AsCas12f gene-editing system, and acknowledged the possibility that the selected mutations may not have been the most optimal of all the available mixes. As a next step, computational modeling or machine learning could be used to sift through the combinations and predict which might offer even better improvements.
And as the authors noted, by applying the same approach to other Cas enzymes, it may be possible to generate efficient genome-editing enzymes capable of targeting a wide range of genes. “The compact size of AsCas12f offers an attractive feature for AAV-deliverable gRNA and partner genes, such as base editors and epigenome modifiers. Therefore, our newly engineered AsCas12f systems could be a promising genome-editing platform … Moreover, with suitable adaptations to the evaluation system, this approach can be applied to enzymes beyond the scope of genome editing.”
The tool — called the Cryosection Histopathology Assessment and Review Machine, or CHARM — studies images to quickly pick out the genetic profile of a kind of tumor called glioma, a process that currently takes days or weeks.
Discover how THALES collaborates with the CNRS to identify new genetic markers leading to the development of pediatric cancers, thereby contributing to the improvement of patient care.
Venture Investing To Catalyze The Next Generation Of Founder-Led, Longevity Biotech Companies — Dr. Alex Colville, Ph.D., Co-Founder and General Partner — age1.
Dr. Alex Colville, Ph.D. is Co-Founder and General Partner of age1 (https://age1.com/), a venture capital firm focused on catalyzing the next generation of founder-led, longevity biotech companies, with a strategy of building a community of visionaries advancing new therapeutics, tools, and technologies targeting aging and age-related diseases.
Professor René Ketting’s team at the Institute of Molecular Biology (IMB) in Mainz, Germany, along with Dr. Sebastian Falk’s group at the Max Perutz Labs in Vienna, Austria, have discovered a new enzyme, PUCH, which plays a key role in preventing the spread of parasitic DNA
DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).