Toggle light / dark theme

Your Next Pet Could Be a Glowing Rabbit

Humans have been selectively breeding cats and dogs for thousands of years to make more desirable pets. A new startup called the Los Angeles Project aims to speed up that process with genetic engineering to make glow-in-the-dark rabbits, hypoallergenic cats and dogs, and possibly, one day, actual unicorns.

The Los Angeles Project is the brainchild of biohacker Josie Zayner, who in 2017 publicly injected herself with the gene-editing tool Crispr during a conference in San Francisco and livestreamed it. “I want to help humans genetically modify themselves,” she said at the time. She’s also given herself a fecal transplant and a DIY Covid vaccine and is the founder and CEO of The Odin, a company that sells home genetic-engineering kits.

Now, Zayner wants to create the next generation of pets. “I think, as a human species, it’s kind of our moral prerogative to level up animals,” she says.

19y Younger Biological Age (Blood Test #1 In 2025)

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Stress could affect the development of the fetal brain

Disruptions in brain development are linked to higher risks of brain and mental illnesses. While genetics are known to play a role, environmental factors at the molecular and cellular levels have been less studied.

The international team of researchers from Karolinska Institutet, the Max Planck Institute of Psychiatry, and Helmholtz Munich aimed to understand how glucocorticoids — hormones involved in the body’s stress response and crucial for normal fetal development — affect brain development when overexposed.

The findings reveal that fetuses are more vulnerable to external influences like stress than previously thought. This stress can impact fetal brain development.

NanoCas, a smaller version of CRISPR tested with a single AAV, delivers on-target results

Mammoth Biosciences researchers have developed NanoCas, an ultracompact CRISPR nuclease, demonstrating its ability to perform gene editing in non-liver tissues, including skeletal muscle, using a single adeno-associated virus (AAV) vector. Experiments in non-human primates (NHPs) resulted in editing efficiencies exceeding 30% in muscle tissues.

CRISPR gene editing has revolutionized genetics, but delivery challenges have restricted its clinical applications primarily to ex vivo and liver-directed therapies. Conventional CRISPR nucleases, including Cas9 and Cas12a, exceed the packaging limits of a single AAV vector, necessitating dual-AAV strategies that reduce efficiency.

Smaller CRISPR systems such as Cas12i and CasX have been identified, but they remain too large or exhibit low editing efficiency. Existing compact systems like Cas14 and IscB have not demonstrated robust efficacy in large animal models.

How Good (Or Not) Is The Biological Age Calculator, PhenoAge?

New YT video!


Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

AI Reveals How Brain Cells Evolved Over 320 Million Years

Summary: A new study reveals how AI-driven deep learning models can decode the genetic regulatory switches that define brain cell types across species. By analyzing human, mouse, and chicken brains, researchers found that some brain cell types remain highly conserved over 320 million years, while others have evolved uniquely.

This regulatory code not only sheds light on brain evolution but also provides new tools for studying gene regulation in health and disease. The findings highlight how AI can identify preserved and divergent genetic instructions controlling brain function across species.

The study also has implications for understanding neurological disorders by linking genetic variants to cognitive traits. Researchers are now expanding their models to study the brains of various animals and human disease states like Parkinson’s.

New smart jacket uses AI to prevent overheating and discomfort

In Europe alone, approximately 2 million people live with chronic inflammatory bowel diseases (IBD), and their incidence has been rising steadily in recent decades. However, a small proportion of the European population carries a genetic variant that provides natural protection against IBD.

A newly published study in the journal eBioMedicine explores how this protective variant can be leveraged to develop modern therapies, demonstrating the potential of evolutionary medicine in addressing chronic diseases of the modern era.

The study, led by the Institute of Clinical Molecular Biology (IKMB) at Kiel University, brought together researchers from genetics, medicine, and archaeology.

Mouse model unveils dynamics through which SYNGAP1 gene supports cognitive function

The SYNGAP1 gene, which supports the production of a protein called SynGAP (Synaptic Ras GTPase-Activating Protein), is known to play a key role in supporting the development of synapses and neural circuits (i.e., connections between neurons). Mutations in this gene have been linked to various learning disabilities, including intellectual disabilities, speech and language delays, autism spectrum disorder (ASD), and epilepsy.

Researchers at the Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology recently carried out a study aimed at better understanding the via which the SYNGAP1 gene contributes to healthy cognitive function. Their findings, published in Nature Communications, suggest that the autonomous expression of this gene in the cortical excitatory neurons of mice promotes the animals’ cognitive abilities via the assembly of long-range integrating sensory and motor information.

“Our paper builds on our ongoing research into how major risk genes for mental health disorders, including autism, regulate brain organization and function,” Gavin Rumbaugh, senior author of the paper, told Medical Xpress. “The field knows the major risk genes that directly contribute to cognitive and behavioral impairments that lead to diagnosable forms of autism and related neuropsychiatric disorders in humans.

/* */