Toggle light / dark theme

CRISPR/Cas9-Mediated Genome Editing as a Therapeutic Approach for Leber Congenital Amaurosis 10

Circa 2017 😀


As the most common subtype of Leber congenital amaurosis (LCA), LCA10 is a severe retinal dystrophy caused by mutations in the CEP290 gene. The most frequent mutation found in patients with LCA10 is a deep intronic mutation in CEP290 that generates a cryptic splice donor site. The large size of the CEP290 gene prevents its use in adeno-associated virus (AAV)-mediated gene augmentation therapy. Here, we show that targeted genomic deletion using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system represents a promising therapeutic approach for the treatment of patients with LCA10 bearing the CEP290 splice mutation. We generated a cellular model of LCA10 by introducing the CEP290 splice mutation into 293FT cells and we showed that guide RNA pairs coupled with SpCas9 were highly efficient at removing the intronic splice mutation and restoring the expression of wild-type CEP290. In addition, we demonstrated that a dual AAV system could effectively delete an intronic fragment of the Cep290 gene in the mouse retina. To minimize the immune response to prolonged expression of SpCas9, we developed a self-limiting CRISPR/Cas9 system that minimizes the duration of SpCas9 expression. These results support further studies to determine the therapeutic potential of CRISPR/Cas9-based strategies for the treatment of patients with LCA10.

Keywords: CEP290; CRISPR/Cas9; LCA10.

Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

New pathway for DNA transfer discovered in tumor microenvironment

University of Notre Dame researchers have discovered another way tumor cells transfer genetic material to other cells in their microenvironment, causing cancer to spread.

In their latest study, published in Cell Reports, Crislyn D’Souza-Schorey, the Morris Pollard Professor in the Department of Biological Sciences, and collaborators discovered that DNA “cargo” is transported in small informational sacs called extracellular microvesicles. Their study is a continuation of work her lab has undertaken to further understand the sharing of information between cells.

“We’ve shown that DNA present in these microvesicles is related to metastasis, so now we have a great platform to assess for genetic aberrations,” said D’Souza-Schorey, who is also affiliated with the Berthiaume Institute for Precision Health, the Boler-Parseghian Center for Rare and Neglected Diseases and the Harper Cancer Research Institute.

Dr. Emilio Emini, Ph.D. — CEO — Bill & Melinda Gates Medical Research Institute

Biomedical Interventions For Substantial Global Health Concerns — Dr. Emilio Emini, Ph.D., CEO, Bill & Melinda Gates Medical Research Institute


Dr. Emilio A. Emini, Ph.D. is the CEO of the Bill & Melinda Gates Medical Research Institute (https://www.gatesmri.org/), a non-profit organization dedicated to the development and effective use of novel biomedical interventions addressing substantial global health concerns, for which investment incentives are limited, and he leads the Institute’s research and development of novel products and interventions for diseases disproportionately impacting the world’s most vulnerable populations.

Before joining the Gates MRI, Dr. Emini served as director of the HIV and Tuberculosis program at the Bill & Melinda Gates Foundation, where he led the foundation’s efforts focused on accelerating the reduction in the incidence of HIV and TB in high-burden geographies, with the goal of achieving sustained epidemic control.

Over the course of his previous 30-year career in the bio-pharmaceutical industry, Dr. Emini led teams involved in the research and development of novel anti-infectives and vaccines. From 1983 to 2004, he led research at the Merck Research Laboratories involved in the development of one of the first highly active anti-retroviral therapies for HIV and, as senior vice president of vaccine research, the successful development of a number of vaccines including vaccines for human papillomavirus and rotavirus.

Dr. Emini later served as senior vice president of vaccine development at the International AIDS Vaccine Initiative. From 2005 to 2015, he was senior vice president of vaccine R&D at Pfizer Inc., leading the development of Prevnar 13Âź for prevention of pneumococcal disease.

You’re invited to join our subreddit community —

R/IntelligenceSupernova — dedicated to techno-optimists, singularitarians, transhumanist thinkers, cosmists, futurists, AI researchers, cyberneticists, crypto enthusiasts, VR creators, artists, philosophers of mind. Accelerating now towards the Cybernetic Singularity with unprecedented advances in AI & Cybernetics, VR, Biotechnology, Nanotechnology, Bionics, Genetic Engineering, Optogenetics, Neuroengineering, Robotics, and other IT fields.

Join now: https://www.reddit.com/r/IntelligenceSupernova.

#Subreddit #IntelligenceSupernova

Switching off Specific Brain Cells Protects Against Stress

Summary: Using chemogenetic technology to deactivate a small group of neurons in the claustrum made mice more resilient against chronic stress and reduced anxiety behaviors.

Source: Osaka University.

It is well known that long-term exposure to stress can lead to serious psychiatric problems. However, the precise mechanisms underpinning the stress response have remained elusive.

Future evolution: from looks to brains and personality, how will humans change in the next 10,000 years?

And going forward, we’ll do this with far more knowledge of what we’re doing, and more control over the genes of our progeny. We can already screen ourselves and embryos for genetic diseases. We could potentially choose embryos for desirable genes, as we do with crops. Direct editing of the DNA of a human embryo has been proven to be possible — but seems morally abhorrent, effectively turning children into subjects of medical experimentation. And yet, if such technologies were proven safe, I could imagine a future where you’d be a bad parent not to give your children the best genes possible.

Computers also provide an entirely new selective pressure. As more and more matches are made on smartphones, we are delegating decisions about what the next generation looks like to computer algorithms, who recommend our potential matches. Digital code now helps choose what genetic code passed on to future generations, just like it shapes what you stream or buy online. This might sound like dark science fiction, but it’s already happening. Our genes are being curated by computer, just like our playlists. It’s hard to know where this leads, but I wonder if it’s entirely wise to turn over the future of our species to iPhones, the internet and the companies behind them.

Discussions of human evolution are usually backward looking, as if the greatest triumphs and challenges were in the distant past. But as technology and culture enter a period of accelerating change, our genes will too. Arguably, the most interesting parts of evolution aren’t life’s origins, dinosaurs, or Neanderthals, but what’s happening right now, our present – and our future.

Scientists make leap forward for genetic sequencing

In a paper published today in Sciences Advances, researchers in the Department of Chemistry and the Department of Physics & Astronomy at the University of California, Irvine revealed new details about a key enzyme that makes DNA sequencing possible. The finding is a leap forward into the era of personalized medicine when doctors will be able to design treatments based on the genomes of individual patients.