Toggle light / dark theme

One in 17 people will suffer from a rare disease at some time in their lives. Most of these rare diseases have a genetic cause and often affect children, but proving which gene change causes a disease is a huge challenge.


Scientists have discovered a new genetic disease, which causes some children’s brains to develop abnormally, resulting in delayed intellectual development and often early onset cataracts.

The majority of patients with the condition, which is so new it doesn’t have a name yet, were also microcephalic, a birth defect where a baby’s head is smaller than expected when compared to babies of the same sex and age.

Researchers from the universities of Portsmouth and Southampton found that changes in a gene called coat protein complex 1 (COPB1) caused this rare genetic disease.

There are several key technologies converging on an inevitable effect, namely a dramatic, explosive increase in human population. Currently around 40% of Earth’s total land area is dedicated to agricultural production to feed seven billion people, but, interestingly, while the human population will increase, the land area required to sustain this population will decrease, approaching zero land area to sustain a trillion human lives. In this era, bulk elements such as gold will have no value, since they will be so easy to produce by fusion separation of elements from bulk rock. Instead, value will be attached to biological material and, most importantly, new technologies themselves.

The several key emerging technologies that make this state of affairs unstoppable are listed along with aspects of their impact:

1) Most important is fusion energy, an unlimited, scalable energy, with no special fuel required to sustain it. This will allow nearly all agriculture to be contained in underground “vertical farm” buildings, extending thousands of feet downwards. Cheap artificially-lighted, climate-controlled environments will allow the maximum efficiency for all food crops. Thus, agriculture will take up close to zero surface area, largely produced underground on Earth or the Moon.

2) Crispr-gene edited foods, allowing the transformation of thousands of currently inedible plants into new types of fruits, vegetables and cereals, while also allowing diversity of currently-existing ones. Everything people eat has been genetically modified by thousands of years of human cultivation; that modification will take place over several years instead of thousands.

3) Acellular agriculture, where yeasts are bioengineered to produce milk and other proteins without any live mammals. Products using this method began to enter the market in 2020.

Oral treatment with a bacterial protein known as colonization factor antigen I (CFA/I) fimbriae, from Escherichia coli bacteria, has been shown to protect against several autoimmune diseases, including arthritis and type 1 diabetes. Another bacteria, called Lactococcus lactis, was recently adapted to express CFA/I fimbriae. These bacteria were shown to effectively suppress inflammation by the induction of regulatory T-cells (Tregs) — which are negative regulators of the immune system, meaning they work to shut down excessive inflammatory responses.


Oral treatment with a molecule produced by bacteria, called colonization factor antigen I, can reduce or halt the progression of Sjögren’s syndrome, a mouse study suggests.

Researchers believe these findings provide the basis for future testing in patients with Sjögren’s.

The study, “Stimulation of regulatory T cells with Lactococcus lactis expressing enterotoxigenic E. coli colonization factor antigen 1 retains salivary flow in a genetic model of Sjögren’s syndrome,” was published in the journal Arthritis Research & Therapy.

Circa 2020


Robots and stranger machines have been using a particular band of ultraviolet light to sterilize surfaces that might be contaminated with coronavirus. Those that must decontaminate large spaces, such as hospital rooms or aircraft cabins, use large, power-hungry mercury lamps to produce ultraviolet-C light. Companies around the world are working to improve the abilities of UV-C producing LEDs, to offer a more compact and efficient alternative. Earlier this month, Seoul Viosys showed what it says is the first 99.9 percent sterilization of SARS-COV-2, the coronavirus that causes COVID-19, using ultraviolet LEDs.

UV LEDs are deadly to viruses and bacteria, because the 100–280 nanometer wavelength C-band shreds genetic material. Unfortunately, it’s also strongly absorbed by nitrogen in the air, so sources have to be powerful to have an effect at a distance. (Air is such a strong barrier, that the sun’s UV-C doesn’t reach the Earth’s surface.) Working with researchers at Korea University, in Seoul, the company showed that its Violed LED modules could eliminate 99.9 percent of the SARS-COV-2 virus using a 30-second dose from a distance of three centimeters.

Unfortunately, the company did not disclose how many of its LEDs were used to achieve that. Assuming that it and the university researchers used a single Violed CMD-FSC-CO1A integrated LED module, a 30-second dose would have delivered at most 600 millijoules of energy. This is somewhat in-line with expectations. A study of UVC’s ability to kill influenza A viruses on N95 respirator masks indicated that about 1 joule per square centimeter would do the job.

In a research paper published in Nature Aging, the team reports using a novel approach to provide the first data-driven classification of multiple diseases obtained using human genetic and medical data freely available from the UK Biobank.

Co-author Professor Linda Partridge (UCL Institute of Health Aging and Max Planck Institute for Biology of Aging) said: Advancing age is the main risk for major diseases, including cancer, dementia, and . Understanding the molecular links between the aging process and age-related diseases could allow them to be targeted with drugs to improve late-life health.

The striking finding from the study was that diseases with a similar age of onset were genetically more similar to each other than they were to diseases in the other three clusters.

CRISPR: Can we control it?
Watch the newest video from Big Think: https://bigth.ink/NewVideo.
Learn skills from the world’s top minds at Big Think Edge: https://bigth.ink/Edge.
———————————————————————————
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a revolutionary technology that gives scientists the ability to alter DNA. On the one hand, this tool could mean the elimination of certain diseases. On the other, there are concerns (both ethical and practical) about its misuse and the yet-unknown consequences of such experimentation.

“The technique could be misused in horrible ways,” says counter-terrorism expert Richard A. Clarke lists biological weapons as one of the potential threats, “Threats for which we don’t have any known antidote.” CRISPR co-inventor, biochemist Jennifer Doudna, echos the concern, recounting a nightmare involving the technology, eugenics, and a meeting with Adolf Hitler.

Should humanity even have access to this type of tool? Do the positives outweigh the potential dangers? How could something like this ever be regulated, and should it be? These questions and more are considered by Doudna, Clarke, evolutionary biologist Richard Dawkins, psychologist Steven Pinker, and physician Siddhartha Mukherjee.
———————————————————————————
TRANSCRIPT:

0:41 Jennifer Doudna defines CRISPR

The more data collected, the better the results.


Understanding the genetics of complex diseases, especially those related to the genetic differences among ethnic groups, is essentially a big data problem. And researchers need more data.

1000, 000 genomes

To address the need for more data, the National Institutes of Health has started a program called All of Us. The project aims to collect genetic information, medical records and health habits from surveys and wearables of more than a million people in the U.S. over the course of 10 years. It also has a goal of gathering more data from underrepresented minority groups to facilitate the study of health disparities. The All of Us project opened to public enrollment in 2018, and more than 270000 people have contributed samples since. The project is continuing to recruit participants from all 50 states. Participating in this effort are many academic laboratories and private companies.

Summary: Study reveals there are differences in genes and the genetic burdens that underpin ASD between males and females. Researchers also found specific differences in the ways the brains of girls on the autism spectrum respond to different social cues.

Source: University of Virginia.

New research has shed light on how autism-spectrum disorder (ASD) manifests in the brains of girls, prompting the scientists to warn that conclusions drawn from studies conducted primarily in boys should not be assumed to hold true for girls.

Sleepy head: Fruit flies with a gene mutation in the gene ISWI have poorly formed sleep circuits in their brains.

A gene that is poorly expressed in people with certain neurodevelopmental conditions is also essential for sleep, according to a new study in fruit flies.

Many people with autism or other neurodevelopmental conditions have trouble falling asleep and slumbering soundly. This difficulty is often viewed as a side effect of a given condition’s core traits, such as heightened sensory sensitivities and repetitive behaviors in autism.

The reality is Benny and Josh both have Canavan disease, a fatal inherited brain disorder. They are buckled into wheelchairs, don’t speak, and can’t control their limbs.

On Thursday, April 8, in Dayton, Ohio, Landsman and his family rolled the older boy, Benny, into a hospital where over several hours, neurosurgeons drilled bore holes into his skull and injected trillions of viral particles carrying the correct version of a gene his body is missing.