Toggle light / dark theme

:Ibotenic Acid Biosynthesis in the Fly Agaric Is Initiated by Glutamate Hydroxylation.


The fly agaric, Amanita muscaria, is widely known for its content of the psychoactive metabolites ibotenic acid and muscimol. However, their biosynthetic pathway and the respective enzymes are entirely unknown. 50 years ago, the biosynthesis was hypothesized to start with 3‐hydroxyglutamate. Here, we build on this hypothesis by the identification and recombinant production of a glutamate hydroxylase from A. muscaria. The hydroxylase gene is surrounded by six further biosynthetic genes, which we link to the production of ibotenic acid and muscimol using recent genomic and transcriptomic data. Our results pinpoint the genetic basis for ibotenic acid formation and thus provide new insights into a decades‐old question concerning a centuries‐old drug.

Keywords: biosynthesis, enzyme catalysis, fly agaric, hydroxylation, ibotenic acid.

Summary: Researchers found an increased inflammatory signal in patients with the C90rf72 subtype of ALS. The increased inflammatory biomarkers could be found in peripheral serum tests.

Source: Thomas Jefferson University.

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a neurodegenerative disease that strikes nearly 5000 people in the U.S. every year.

Nanoengineers at the University of California San Diego have developed immune cell-mimicking nanoparticles that target inflammation in the lungs and deliver drugs directly where they’re needed. As a proof of concept, the researchers filled the nanoparticles with the drug dexamethasone and administered them to mice with inflamed lung tissue. Inflammation was completely treated in mice given the nanoparticles, at a drug concentration where standard delivery methods did not have any efficacy.

The researchers reported their findings in Science Advances on June 16.

What’s special about these is that they are coated in a cell membrane that’s been genetically engineered to look for and bind to inflamed . They are the latest in the line of so-called cell membrane-coated nanoparticles that have been developed by the lab of UC San Diego nanoengineering professor Liangfang Zhang. His lab has previously used cell membrane-coated nanoparticles to absorb toxins produced by MRSA; treat sepsis; and train the immune system to fight cancer. But while these previous cell membranes were naturally derived from the body’s , the cell membranes used to coat this dexamethasone-filled nanoparticle were not.

✅ Instagram: https://www.instagram.com/pro_robots.

You are on the Pro Robot channel and today we are going to talk about the soldiers of the future. Exoskeletons, ballistic helmets, military suits, chips and more are already being introduced into the armaments of different countries. In this issue we will find out what the super-soldier of the future will be like and what developments are being conducted in the military industry. Watch the video to the end and write your opinion in the comments: will robots replace humans in military service?

0:00 In this video.
0:30 Combat glasses.
2:26 Devtac Ronin Kevlar ballistic helmet.
3:00 STILE smart fabric.
3:42 Stealth Cloak.
4:10 Future Soldier System Full Suit.
5:15 Sotnik Suit.
5:55 Exoskeleton Military.
6:32 PowerWalk current generator exoskeletons.
7:00 Human Universal Load Carrier exoskeleton with hydraulic drive.
7:24 A Flying Suit for Military.
7:48 Jetpack.
8:09 Invasive chips and genetic engineering.
9:02 Man-Made Lightning.

More interesting and useful content:

In a minute and 27 seconds we get the what from an eye regeneration for mice, to monkey trials to start later this year, to human trials by 2023, and full body in a decade.


David Sinclair—a world-leading biologist, Harvard Medical School Professor, and author of The New York Times best-selling book @Lifespan.

🧬 His work on understanding why we age and how to slow down the aging process has contributed significantly to getting the longevity science to where it is today. David’s numerous discoveries have been published in the most respected scientific journals. He co-founded many biotech companies, including Life Biosciences, MetroBiotech, and InsideTracker.

Circa 2013 o.,.o.


Inked fingerprints on paper forms. We’ve come a long way from the days when that was the height of forensic technology.

GE is light years ahead after launching a breakthrough portable DNA scanner at the 25th World Congress of the International Society for Forensic Genetics in Melbourne in early September.

The scanner uses a new process called microfluidics to present a DNA analysis and database match in only 85 minutes — a process that used to take at least 48 hours.

What Are Telomeres?

As our cells divide (a process known as mitosis), our cells replicate the long strands of DNA located within the nucleus of our cells (known as chromosomes). This process however is imperfect, and due to the mechanics of how this is carried out by the body, the DNA is shorted ever so slightly during each replication cycle. I will not get into the details on how exactly this happens in this article, but if you are interested then this video should give you a better understanding of this process. In order to prevent important parts of the DNA being lost through the replication process, areas of what is mostly blank DNA at the end of the chromosomes are used as a sort of sacrificial buffer, allowing for the DNA to be replicated without the loss of genetic information. These areas of the chromosomes are known as telomeres. In addition to providing a buffer zone for DNA replication, telomeres also prevent broken strands of DNA attaching themselves to the ends of chromosomes, which both prevents chromosomes from becoming conjoined, as well as allowing for the opportunity for the broken strand of DNA to be repaired.

Do longer telomeres correspond to longer lifespans?

Calico has made some important discoveries about Yamanaka factors.


In a preprint paper, scientists from Calico, Google’s longevity research behemoth, suggest that contrary to our previous understanding, transient reprogramming of cells using Yamanaka factors involves suppressing cellular identity, which may open the door to carcinogenic mutations. They also propose a milder reprogramming method inspired by limb regeneration in amphibians [1].

Rejuvenation that can give you cancer

In 2006, a group of scientists led by Shinya Yamanaka developed a technique for reprogramming somatic cells back into pluripotent stem cells by transfusing them with a cocktail of transcription factors [2]. These four pluripotency-associated genes, Oct4, Sox2, Klf4, and c-Myc (OSKM), became known as the Yamanaka factors. This breakthrough made it possible to produce patient-specific stem cells from their own somatic cells.

A team of researchers from the University of Sydney, the ARC-Plant Protection Research Institute and York University, has found that workers in a species of honeybee found in South Africa reproduce by making near-perfect clones of themselves. In their paper published in Proceedings of the Royal Society B, the group describes their study of the bees and what they learned about them.

Prior research has found that some creatures reproduce through parthenogenesis, in which individuals reproduce without mating. This form of reproduction has the advantage of not wasting time and energy on mating and the gene pool remains undiluted. The downside, of course, is loss of genetic diversity, which helps species survive in changing conditions. Prior research has also shown that for most species, parthenogenesis is a less-than-perfect way to produce . This is because some tiny bit of genetic material is generally mixed wrong—these mistakes, known as recombinations, can lead to birth defects or non-productive eggs. In this new effort, the researchers have found a kind of honeybee that has developed a way to avoid recombinations.

The researchers found that South African Cape honeybee queens reproduce sexually, but the workers reproduce asexually. They then conducted a small experiment—they affixed tape to the reproductive organs of a queen, preventing males from mating with her, and then allowed both her and the worker bees in the same hive to reproduce asexually. They then tested the degree of recombination in both. They found that offspring of the queen had approximately 100 times as much recombination as the worker bees. Even more impressive, the offspring of the worker bees were found to be nearly identical clones of their parent. More testing showed that one line of worker bees in the hive had been cloning themselves for approximately 30 years—a clear sign that workers in the hive were not suffering from birth defects or an inability to produce viable offspring. It also showed that they have evolved a means for preventing recombination when they reproduce.