Menu

Blog

Archive for the ‘genetics’ category: Page 279

Jun 4, 2020

Scientists aim gene-targeting breakthrough against COVID-19

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics, nanotechnology

A team of scientists from Stanford University is working with researchers at the Molecular Foundry, a nanoscience user facility located at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), to develop a gene-targeting, antiviral agent against COVID-19.

Last year, Stanley Qi, an assistant professor in the departments of bioengineering, and chemical and at Stanford University and his team had begun working on a technique called PAC-MAN—or Prophylactic Antiviral CRISPR in —that uses the gene-editing tool CRISPR to fight influenza.

But that all changed in January, when news of the COVID-19 pandemic emerged. Qi and his team were suddenly confronted with a mysterious new virus for which no one had a clear solution. “So we thought, ‘Why don’t we try using our PAC-MAN technology to fight it?’” said Qi.

Jun 4, 2020

Scientists Gene-Hack Human Cells to Turn Invisible

Posted by in categories: biotech/medical, genetics

The cells fully integrated the genes that let squids turn translucent.

Jun 4, 2020

A new 3D map illuminates the ‘little brain’ within the heart

Posted by in categories: genetics, neuroscience

Microscopy and genetic studies yield a comprehensive map of the nerve cells found in the heart of a rat.

Jun 4, 2020

How DNA and RNA subunits might have formed to make the first genetic alphabet

Posted by in categories: biotech/medical, genetics

Understanding the prebiotic origins of the nucleic acids is a long-standing challenge. The latest experiments support the idea that the first nucleic acid encoded information using a mixed ‘alphabet’ of RNA and DNA subunits. RNA and DNA nucleosides might have emerged together on prebiotic Earth.

Jun 1, 2020

Left-Handed DNA Has a Biological Role Within a Dynamic Genetic Code

Posted by in categories: biotech/medical, genetics

Once considered an unimportant curiosity, Z-DNA is now recognized to provide an on-the-fly mechanism to regulate how an RNA transcript is edited.

The Infant Gut Microbiome and Probiotics that Work

The Infant Gut Microbiome and Probiotics that Work.

Jun 1, 2020

Natural Killer Cell-Based Therapies Targeting Cancer: Possible Strategies to Gain and Sustain Anti-Tumor Activity

Posted by in categories: biotech/medical, genetics

Circa 2015


Natural killer (NK) cells were discovered 40 years ago, by their ability to recognize and kill tumor cells without the requirement of prior antigen exposure. Since then, NK cells have been seen as promising agents for cell-based cancer therapies. However, NK cells represent only a minor fraction of the human lymphocyte population. Their skewed phenotype and impaired functionality during cancer progression necessitates the development of clinical protocols to activate and expand to high numbers ex vivo to be able to infuse sufficient numbers of functional NK cells to the cancer patients. Initial NK cell-based clinical trials suggested that NK cell-infusion is safe and feasible with almost no NK cell-related toxicity, including graft-versus-host disease. Complete remission and increased disease-free survival is shown in a small number of patients with hematological malignances. Furthermore, successful adoptive NK cell-based therapies from haploidentical donors have been demonstrated. Disappointingly, only limited anti-tumor effects have been demonstrated following NK cell infusion in patients with solid tumors. While NK cells have great potential in targeting tumor cells, the efficiency of NK cell functions in the tumor microenvironment is yet unclear. The failure of immune surveillance may in part be due to sustained immunological pressure on tumor cells resulting in the development of tumor escape variants that are invisible to the immune system. Alternatively, this could be due to the complex network of immune-suppressive compartments in the tumor microenvironment, including myeloid-derived suppressor cells, tumor-associated macrophages, and regulatory T cells. Although the negative effect of the tumor microenvironment on NK cells can be transiently reverted by ex vivo expansion and long-term activation, the aforementioned NK cell/tumor microenvironment interactions upon reinfusion are not fully elucidated. Within this context, genetic modification of NK cells may provide new possibilities for developing effective cancer immunotherapies by improving NK cell responses and making them less susceptible to the tumor microenvironment. Within this review, we will discuss clinical trials using NK cells with a specific reflection on novel potential strategies, such as genetic modification of NK cells and complementary therapies aimed at improving the clinical outcome of NK cell-based immune therapies.

Keywords: natural killer cells, adoptive cell therapy, immunotherapy, cancer, clinical trials, expansion, tumor microenvironment, genetic modifications.

Continue reading “Natural Killer Cell-Based Therapies Targeting Cancer: Possible Strategies to Gain and Sustain Anti-Tumor Activity” »

Jun 1, 2020

Battling Parkinson’s disease

Posted by in categories: biotech/medical, genetics, life extension, neuroscience

Who has heard of mitochondrial medicine?


“We know that increased rates of mtDNA mutation cause premature aging,” said Bruce Hay, Professor of biology and biological engineering at the California Institute of Technology. “This, coupled with the fact that mutant mtDNA accumulates in key tissues such as neurons and muscle that lose function as we age, suggests that if we could reduce the amount of mutant mtDNA, we could slow or reverse important aspects of aging.”

This brings us to the second major development relevant to mitochondria in disease — that genetic technology is now at a point where the targeted removal of the problem mitochondrial genes can become the basis for clinical intervention. This is the implication of research that Hay and colleagues both at Caltech and the University of California at Los Angeles described in a paper published in the journal Nature Communications.

Continue reading “Battling Parkinson’s disease” »

Jun 1, 2020

New Recombineering Method May Overcome Key Obstacle in Genetically Engineering Bacteria

Posted by in categories: bioengineering, genetics

New genetic engineering method promises to super-charge recombineering and open the bacterial world at large to this underutilized approach.

Jun 1, 2020

Evolution of coronavirus outlines path from animals to humans

Posted by in categories: biotech/medical, evolution, genetics

Summary: Study reports SARS-CoV-2, the virus that causes COVID-19, was well suited to making the jump from animals to humans by shapeshifting as it gained the ability to infect human cells. The virus’s ability to infect humans occurred via exchanging gene fragments from a coronavirus that infected pangolins. The species-to-species transmission was a result of the ability of SARS-CoV-2 to bind to host cells through alterations to its genetic material.

Source: Duke University

A team of scientists studying the origin of SARS-CoV-2, the virus that has caused the COVID-19 pandemic, found that it was especially well-suited to jump from animals to humans by shapeshifting as it gained the ability to infect human cells.

May 31, 2020

Scientists Discover So-Called ‘Skinny Gene’

Posted by in categories: biotech/medical, genetics

VIENNA — We all know that one person who can eat whatever they like and never gain a pound. Ice cream at 2 in the morning? Bring it on. A third, or fourth, slice of pizza? Sure, why not. For the rest of us, the genetic perks that these individuals enjoy can be frustrating to say the least. Now, a groundbreaking new international study appears to have zeroed in on the so-called “skinny gene” that help keep such individuals thin.

Scientists from Austria, Canada, and Estonia say that lower, or deficient, levels of the gene Anaplastic Lymphoma Kinase (ALK) are significantly linked to skinniness and bodily resistance to weight gain.

Most research projects focusing on weight loss and gain search for genes that cause obesity. This study is novel due to the fact that it focuses specifically for a gene linked to thinness instead.