Toggle light / dark theme

UC scientists and physicians hope to permanently cure patients of sickle cell disease by using CRISPR-Cas9 to replace a defective gene with the normal version.


In 2014, two years after her Nobel Prize-winning invention of CRISPR-Cas9 genome editing, Jennifer Doudna thought the technology was mature enough to tackle a cure for a devastating hereditary disorder, sickle cell disease, that afflicts millions of people around the world, most of them of African descent. Some 100000 Black people in the U.S. are afflicted with the disease.

Mobilizing colleagues in the then-new Innovative Genome Institute (IGI) — a joint research collaboration between the University of California, Berkeley, and UC San Francisco — they sought to repair the single mutation that makes red blood cells warp and clog arteries, causing excruciating pain and often death. Available treatments today typically involve regular transfusions, though bone marrow transplants can cure those who can find a matched donor.

Researchers in Australia have discovered a gene responsible for a particularly aggressive type of hormone-sensitive breast cancer which has tragically low survival rates.

“Hopefully this will dramatically improve the poor outcomes these patients currently suffer,” said Harry Perkins Institute of Medical Research epigeneticist Pilar Blancafort.

It’s hard to overstate just how different cancers can be from one another. Even under the umbrella of ‘breast cancer’ lie several types, such as hormone receptor sensitive, HER2 positive, or non-hormone sensitive breast cancer; within those groups, there are even more types that can respond to treatments differently from one another.

Experiments with this antibody revealed that BMP signaling is essential for determining the number of teeth in mice. Moreover, a single administration was enough to generate a whole tooth.


Japan — The tooth fairy is a welcome guest for any child who has lost a tooth. Not only will the fairy leave a small gift under the pillow, but the child can be assured of a new tooth in a few months. The same cannot be said of adults who have lost their teeth.

A new study by scientists at Kyoto University and the University of Fukui, however, may offer some hope. The team reports that an antibody for one gene — uterine sensitization associated gene-1 or USAG-1 — can stimulate tooth growth in mice suffering from tooth agenesis, a congenital condition. The paper was published in Science Advances.

Although the normal adult mouth has 32 teeth, about 1% of the population has more or fewer due to congenital conditions. Scientists have explored the genetic causes for cases having too many teeth as clues for regenerating teeth in adults.

Stanford University neurobiologist Sergiu Pașca has been making brain organoids for about 10 years, and his team has learned that some of these tissue blobs can thrive in a dish for years. In the new study, they teamed up with neurogeneticist Daniel Geschwind and colleagues at the University of California, Los Angeles (UCLA), to analyze how the blobs changed over their life spans…

…They noticed that when an organoid reached 250 to 300 days old—roughly 9 months—its gene expression shifted to more closely resemble that of cells from human brains soon after birth. The cells’ patterns of methylation—chemical tags that can affix to DNA and influence gene activity—also corresponded to increasingly mature human brain cells as the organoids aged, the team reports today in Nature Neuroscience.


Organoids develop genetic signatures of postnatal brains, possibly broadening their use as disease models.

Sleep deprivation causes an inflammatory response that results in negative health outcomes.


Summary: Study sheds light on DNA methylation related to sleep deprivation in those with shift-work disorder.

Source: University of Helsinki

Long-term sleep deprivation is detrimental to health, increasing the risk of psychiatric and somatic disorders, such as depression and cardiovascular diseases. And yet, little is known about the molecular biological mechanisms set in motion by sleep deprivation which underlie related adverse health effects.

Researchers can now control the order in which CAS9 makes edits to cell DNA instead of performing all edits at once.


Researchers from the University of Illinois Chicago have discovered a new gene-editing technique that allows for the programming of sequential cuts—or edits—over time.

CRISPR is a gene-editing tool that allows scientists to change the DNA sequences in and sometimes add a desired sequence or genes. CRISPR uses an enzyme called Cas9 that acts like scissors to make a cut precisely at a desired location in the DNA. Once a cut is made, the ways in which cells repair the DNA break can be influenced to result in different changes or edits to the DNA sequence.

The discovery of the gene-editing capabilities of the CRISPR system was described in the early 2010s. In only a few years, scientists became enamored with the ease of guiding CRISPR to target almost any DNA sequence in a cell or to target many different sites in a cell in a single experiment.

The genome editing technology CRISPR has emerged as a powerful new tool that can change the way we treat disease. The challenge when altering the genetics of our cells, however, is how to do it safely, effectively, and specifically targeted to the gene, tissue and organ that needs treatment. Scientists at Tufts University and the Broad Institute of Harvard and MIT have developed unique nanoparticles comprised of lipids—fat molecules—that can package and deliver gene editing machinery specifically to the liver. In a study published today in the Proceedings of the National Academy of Sciences, they have shown that they can use the lipid nanoparticles (LNPs) to efficiently deliver the CRISPR machinery into the liver of mice, resulting in specific genome editing and the reduction of blood cholesterol levels by as much as 57%—a reduction that can last for at least several months with just one shot.

The problem of high cholesterol plagues more than 29 million Americans, according to the Centers for Disease Control and Prevention. The condition is complex and can originate from multiple as well as nutritional and lifestyle choices, so it is not easy to treat. The Tufts and Broad researchers, however, have modified one gene that could provide a protective effect against elevated cholesterol if it can be shut down by gene editing.

The gene that the researchers focused on codes for the angiopoietin-like 3 enzyme (Angptl3). That enzyme tamps down the activity of other enzymes—lipases—that help break down cholesterol. If researchers can knock out the Angptl3 gene, they can let the lipases do their work and reduce levels of cholesterol in the blood. It turns out that some lucky people have a natural mutation in their Angptl3 gene, leading to consistently low levels of triglycerides and low-density lipoprotein (LDL) cholesterol, commonly called “bad” cholesterol, in their bloodstream without any known clinical downsides.

In autism, male-female imbalance is especially pronounced. Boys are as much as four times more likely to have some form of autism and are also more likely to have severe symptoms.


HAMILTON, ON, March 3, 2021 — Evolutionary forces drive a glaring gender imbalance in the occurrence of many health conditions, including autism, a team of genetics researchers has concluded.

The human genome has evolved to favour the inheritance of very different characteristics in males and females, which in turn makes men more vulnerable to a host of physical and mental health conditions, say the researchers responsible for a new paper published in the Journal of Molecular Evolution.

Their analysis shows that while there are certain conditions that occur only in women (cervical cancer and ovarian cancer, for example), or much more frequently in women (such as multiple sclerosis), men are more prone to medical conditions overall and, as a result, on average die sooner than women.

“If you don’t do both, you’re not going to get very far,” he says. He wants to bring “carbon drawdown” technologies into the conversation with genetically modified trees.

Last year, DeLisi organized a workshop with a team of heavy hitters — Sir Richard Roberts (biochemist, Nobel laureate, and staunch advocate for GMOs), Val Giddings (a geneticist at the Information Technology and Innovation Foundation), and researchers from Oak Ridge National Laboratory — to create solutions, like genetically modifying carbon-hungry trees.

And they are close.

Studies in mammals have shown that the ‘memories’ of various environmental effects – such as diet, weight, and stress – are being passed on from dads to offspring, despite these states not being coded for in the DNA sequences carried by sperm. Now, we have a new explanation for how it’s possible.

The story has much to do with epigenetics. Molecules that attach themselves to DNA can act like on-off switches that control which sections of DNA get used – but until now we haven’t known which of these molecules can carry the settings marked by a father’s life experiences, to be incorporated into an embryo via sperm.

“The big breakthrough with this study is that it has identified a non-DNA-based means by which sperm remember a father’s environment (diet) and transmit that information to the embryo,” said McGill University epigeneticist Sarah Kimmins.