Menu

Blog

Archive for the ‘encryption’ category: Page 43

Oct 28, 2016

Google’s Alice AI Is Sending Secret Messages To Another AI

Posted by in categories: education, encryption, robotics/AI

Encryption is something we all rely on regularly to keep our information safe online, but many of us have experienced it since childhood, and in fact probably used it in school. If you ever wrote out a message in code that nobody could read without they knew the decipher rules, you messed around with encryption!

That same secret message technique has now been put to a much more worrying use. Google has created multiple AI and they’ve learned how to not only create their own encryption, but are now communicating using messages nobody else can read.

This Google Brain project is an experiment in deep learning techniques and involved the use of three neural networks (Alice, Bob, and Eve) created using artificial neurons. These neural nets work like a much simplified version of our brains, and they are slowly and steadily becoming more intelligent.

Continue reading “Google’s Alice AI Is Sending Secret Messages To Another AI” »

Oct 26, 2016

Precise quantum cloning: Possible pathway to secure communication

Posted by in categories: encryption, quantum physics

Physicists at The Australian National University (ANU) and University of Queensland (UQ) have produced near-perfect clones of quantum information using a new method to surpass previous cloning limits.

A global race is on to use quantum physics for ultra-secure encryption over long distances according to Prof Ping Koy Lam, node director of the ARC Centre of Excellence for Quantum Computation and Communication Technology (CQC2T) at ANU.

Continue reading “Precise quantum cloning: Possible pathway to secure communication” »

Oct 26, 2016

Google’s neural networks invent their own encryption

Posted by in categories: computing, encryption, robotics/AI

Using machine learning, computers have come up with codes that let them send secret messages to each other – but they’re still a long way off humans.

Read more

Oct 25, 2016

The exciting new age of quantum computing

Posted by in categories: biotech/medical, computing, encryption, military, quantum physics, security, space travel

What does the future hold for computing? Experts at the Networked Quantum Information Technologies Hub (NQIT), based at Oxford University, believe our next great technological leap lies in the development of quantum computing.

Quantum computers could solve problems it takes a conventional computer longer than the lifetime of the universe to solve. This could bring new possibilities, such as advanced drug development, superior military intelligence, greater opportunities for and enhanced encryption security.

Continue reading “The exciting new age of quantum computing” »

Oct 18, 2016

Quantum Teleportation Could Revolutionize Modern Phone And Internet Communication

Posted by in categories: encryption, finance, internet, mobile phones, quantum physics, space, transportation

I never get tired of articles highlighting the potential around leveraging Quantum teleporting as a method to replace networks and communications. Now the real question is how soon and how much of the existing infrastructure will need to be replaced to begin taking advantage of this technology earlier than others? As with most things, governments are often early adopters as well as Financial Services and ISPs are a close 2nd in the adoption of such technologies.


An experiment conducted about quantum teleportation could improve and transform the modern phone and Internet communication by having highly secure and encrypted messaging.

A recent study has suggested that comet outbursts are caused by avalanches and not geysers.

Continue reading “Quantum Teleportation Could Revolutionize Modern Phone And Internet Communication” »

Oct 17, 2016

How quantum effects could improve artificial intelligence

Posted by in categories: computing, encryption, quantum physics, robotics/AI, sustainability

(Phys.org)—Over the past few decades, quantum effects have greatly improved many areas of information science, including computing, cryptography, and secure communication. More recently, research has suggested that quantum effects could offer similar advantages for the emerging field of quantum machine learning (a subfield of artificial intelligence), leading to more intelligent machines that learn quickly and efficiently by interacting with their environments.

In a new study published in Physical Review Letters, Vedran Dunjko and coauthors have added to this research, showing that quantum effects can likely offer significant benefits to .

“The progress in machine learning critically relies on processing power,” Dunjko, a physicist at the University of Innsbruck in Austria, told Phys.org. “Moreover, the type of underlying information processing that many aspects of machine learning rely upon is particularly amenable to quantum enhancements. As quantum technologies emerge, quantum machine learning will play an instrumental role in our society—including deepening our understanding of climate change, assisting in the development of new medicine and therapies, and also in settings relying on learning through interaction, which is vital in automated cars and smart factories.”

Continue reading “How quantum effects could improve artificial intelligence” »

Oct 16, 2016

No satellites needed for next-gen navigation system that uses “signals of opportunity”

Posted by in categories: encryption, internet, military, mobile phones, robotics/AI, satellites

The Global Positioning System (GPS) is a great navigation aid – unless you lose the signal while negotiating a complicated spaghetti junction. That’s bad enough for conventional cars, but for autonomous vehicles it could be catastrophic, so the University of California, Riverside’s Autonomous Systems Perception, Intelligence, and Navigation (ASPIN) Laboratory under Zak Kassas is developing an alternative navigation system that uses secondary radio signals, such as from cell phone systems and Wi-Fi to either complement existing GPS-based systems or as a standalone alternative that is claimed to be highly reliable, consistent, and tamper-proof.

Today, there are two global satellite navigation systems in operation, the US GPS and the Russian GLONASS, with the European Galileo system set to become fully operational in the next few years, and plans for the Chinese Beidou system to extend globally by 2020. These have revolutionized navigation, surveying, and a dozen other fields, but GPS and related systems still leave much to be desired. By their nature, GPS signals are weak and positions need to be confirmed by several satellites, so built up areas or mountainous areas can make the system useless. In addition, GPS signals can be deliberately or accidentally jammed or spoofed due to insufficient encryption and other protections.

Continue reading “No satellites needed for next-gen navigation system that uses ‘signals of opportunity’” »

Oct 15, 2016

Teleporting Toward a Quantum Internet

Posted by in categories: encryption, internet, mobile phones, quantum physics

New experiments in Calgary tested quantum teleportation in actual infrastructure, representing a major step forward for the technology.

Quantum physics is a field that appears to give scientists superpowers. Those who understand the world of extremely small or cold particles can perform amazing feats with them — including teleportation — that appear to bend reality.

The science behind these feats is complicated, and until recently, didn’t exist outside of lab settings. But that’s changing: researchers have begun to implement quantum teleportation in real-world contexts. Being able to do so just might revolutionize modern phone and Internet communications, leading to highly secure, encrypted messaging.

Continue reading “Teleporting Toward a Quantum Internet” »

Oct 13, 2016

BT And Toshiba Showcase UK’s First Secure Quantum Communications

Posted by in categories: encryption, quantum physics

BT and Toshiba have showcased the UK’s first use of secure quantum communication at the telecoms company’s research and development centre in Ipswich.

The showcase demonstrates the use of quantum cryptography for communications over fibre optic cabling. By exploiting the quantum states of photons, the most visible elementary particles in the electromagnetic spectrum, the cryptographic technique can be used to communicate securely over normal fibre cables.

Read more

Oct 13, 2016

Will Quantum Computers Kill Bitcoin?

Posted by in categories: bitcoin, cybercrime/malcode, encryption, quantum physics

Since they were first theorized by the physicist Richard Feynman in 1982, quantum computers have promised to bring about a new era of computing. It is only relatively recently that theory has translated into significant real-world advances, with the likes of Google, NASA and the CIA working towards building a quantum computer. Computer scientists are now warning that the arrival of the ultra-powerful machines will cripple current encryption methods and as a result bring a close to the great bitcoin experiment—collapsing the technological foundations that bitcoin is built upon.

“Bitcoin is definitely not quantum computer proof,” Andersen Cheng, co-founder of U.K. cybersecurity firm Post Quantum, tells Newsweek. “Bitcoin will expire the very day the first quantum computer appears.”

The danger quantum computers pose to bitcoin, Cheng explains, is in the cryptography surrounding what is known as the public and private keys—a set of numbers used to facilitate transactions. Users of bitcoin have a public key and a private key. In order to receive bitcoin, the recipient shares the public key with the sender, but in order to spend it they need their private key, which only they know. If somebody else is able to learn the private key, they can spend all the bitcoin.

Continue reading “Will Quantum Computers Kill Bitcoin?” »

Page 43 of 56First4041424344454647Last