Zcash is the first open, permissionless cryptocurrency that can fully protect the privacy of transactions using zero-knowledge cryptography. The Zcash client is now available for download as a command-line tool for Linux.
Get Started
Zcash is the first open, permissionless cryptocurrency that can fully protect the privacy of transactions using zero-knowledge cryptography. The Zcash client is now available for download as a command-line tool for Linux.
Get Started
Abstract: In this paper we present a method which allows attackers to covertly leak data from isolated, air-gapped computers. Our method utilizes the hard disk drive (HDD) activity LED which exists in most of today’s desktop PCs, laptops and servers. We show that a malware can indirectly control the HDD LED, turning it on and off rapidly (up to 5800 blinks per second) — a rate that exceeds the visual perception capabilities of humans. Sensitive information can be encoded and leaked over the LED signals, which can then be received remotely by different kinds of cameras and light sensors. Compared to other LED methods, our method is unique, because it is also covert — the HDD activity LED routinely flickers frequently, and therefore the user may not be suspicious to changes in its activity. We discuss attack scenarios and present the necessary technical background regarding the HDD LED and its hardware control. We also present various data modulation methods and describe the implementation of a user-level malware, that doesn’t require a kernel component. During the evaluation, we examine the physical characteristics of different colored HDD LEDs (red, blue, and white) and tested different types of receivers: remote cameras, extreme cameras, security cameras, smartphone cameras, drone cameras, and optical sensors. Finally, we discuss hardware and software countermeasures for such a threat. Our experiment shows that sensitive data can be successfully leaked from air-gapped computers via the HDD LED at a maximum bit rate of 4000 bits per second, depending on the type of receiver and its distance from the transmitter. Notably, this speed is 10 times faster than the existing optical covert channels for air-gapped computers. These rates allow fast exfiltration of encryption keys, keystroke logging, and text and binary files.
The encryption codes that safeguard internet data today won’t be secure forever.
Future quantum computers may have the processing power and algorithms to crack them.
Nathan Hamlin, instructor and director of the WSU Math Learning Center, is helping to prepare for this eventuality.
Published: 2012/11/01 | ISBN: 311027325X | PDF | 349 pages | 12.06 MB
The subject of this book is theory of quantum system presented from information science perspective. The central role is played by the concept of quantum channel and its entropic and information characteristics. Quantum information theory gives a key to understanding elusive phenomena of quantum world and provides a background for development of experimental techniques that enable measuring and manipulation of individual quantum systems. This is important for the new efficient applications such as quantum computing, communication and cryptography. Research in the field of quantum informatics, including quantum information theory, is in progress in leading scientific centers throughout the world. This book gives an accessible, albeit mathematically rigorous and self-contained introduction to quantum information theory, starting from primary structures and leading to fundamental results and to exiting open problems.
Cybercrime & Cybersecurity 0 20
There is a reason why they’re not in the private sector developing QC. Noticed all represented no one developing and delivering QC commercially. There is a reason why folks like this become nay sayers as it is hard when you’re not able to deliver and not hireable by the private sector to deliver QC. With such a huge demand for QC experts and in security; you have to wonder why these folks have not been employed in a QC Tech company especially when you see tech grabbing every professor they can to develop QC and especially cyber security. Also, I still never saw any bases or details scientifically for their argument why specifically where and how QC will not block hacking just a bunch of professors throwing out words and high level speculations.
SAN FRANCISCO—Cryptographers said at the RSA Conference Tuesday they’re skeptical that advances in quantum computing and artificial intelligence will profoundly transform computer security.
“I’m skeptical there will be much of an impact,” Ron Rivest, a MIT professor and inventor of several symmetric key encryption algorithms, said early at the annual Cryptographers’ Panel here.
Susan Landau, a professor who specializes in cybersecurity policy and computer science at Worcester Polytechnic Institute, said that while artificial intelligence can be helpful when it comes to processing lots of data effectively, she doesn’t think it will be useful in fingering out series attacks or anomalous situations.
I actually had a person recently state quantum was a fad; boy were they ever wrong.
During the next ten years, quantum technologies will become part of and revolutionize our everyday lives in the form of computers, sensors, encryption, and much more—and in a way that can be difficult for us to comprehend.
Businesses will also boost both their research and development activities in this area.
“As from 2018, EU’s future flagship project, which is backed by EUR 1 billion, will focus on quantum technology, and several European countries are investing massively in the area. Innovation Fund Denmark has contributed DKK 80 million, and over the next couple of years, more funds are likely to be allocated to quantum research,” explains Ulrik Lund Andersen, Professor at DTU Physics.
NICE.
The Science
Newswise — Quantum computers — a possible future technology that would revolutionize computing by harnessing the bizarre properties of quantum bits, or qubits. Qubits are the quantum analogue to the classical computer bits “0” and “1.” Engineering materials that can function as qubits is technically challenging. Using supercomputers, scientists from the University of Chicago and Argonne National Laboratory predicted possible new qubits built out of strained aluminum nitride. Moreover, the scientists showed that certain newly developed qubits in silicon carbide have unusually long lifetimes.
The Impact
Nice read on QC cryptography.
Between Russian hackers and insecure email servers, this past election has proved that cyber security is going to be extremely important moving forward. But with the advent of quantum computers, it’s only going to become harder to keep data safe from those with the motive and the right tools. Fortunately, scientists believe they may have found a solution within the same principles that guide quantum computing: quantum encryption.
To fully understand the scope of what quantum computers can do, it’s important to realize that it might take current, non-quantum computers longer than the total age of the universe to crack certain encryptions. But, as grad student Chris Pugh explained in a recent interview with Wired, quantum computers might be able to crack the same codes in “a matter of hours or days”.
The magic of quantum encryption is that, despite being based on similar principles, quantum computers can’t interfere with it—i n theory, nothing can. Using quantum entanglement (what Einstein called ‘spooky action at a distance’), methods like quantum key distribution can encode data in particles sort of like Morse code or a binary bit, then send them. These particles are ‘entangled,’ which means each one has been paired with a double, which resides in the hands of the sender. This is where the magic happens, according to PopSci:
Hmmmm.
Computers based on quantum mechanics have been in the realm of science fiction for years, but recently companies like Google (Nasdaq: GOOGL), and even the National Security Agency, have started to think practically about what their existence would mean.
These super-powerful computers would be exciting in many respects, but they would also be able to break the methods of data encryption that currently make it safe to browse the internet or pay for things online.