Toggle light / dark theme

Modular network offers fault-tolerant scaling of superconducting qubit devices

Quantum computers, devices that can perform computations relying on the principles of quantum mechanics, are expected to outperform classical computers on some types of optimization and processing tasks. While physicists and engineers have introduced various quantum computing systems over the past decades, reliably scaling these systems so that they can tackle real-world problems while correcting errors arising during computations has so far proved challenging.

Researchers at the University of Illinois at Urbana-Champaign recently introduced a new, modular quantum architecture for scaling superconducting quantum processors in a fault-tolerant, scalable and reconfigurable way. Scaling in a fault-tolerant way is required to maintain the and conditions necessary to perform long-term quantum computations.

Their proposed system, outlined in a paper published in Nature Electronics, is comprised of several modules (i.e., superconducting devices) that can operate independently and be connected to others via a low-loss interconnect, forming a larger quantum network.

Columbia Engineers Develop Radiation-Hardened Chips for the Large Hadron Collider

In one of the most extreme environments on Earth—the Large Hadron Collider—normal electronics fail almost instantly. But engineers at Columbia University have created custom microchips that not only survive the collider’s intense radiation but play a pivotal role in unlocking the secrets of the univ

New computer program mimics cell behavior for faster medical discoveries

Using mathematical analysis of patterns of human and animal cell behavior, scientists say they have developed a computer program that mimics the behavior of such cells in any part of the body. Led by investigators at Indiana University, Johns Hopkins Medicine, the University of Maryland School of Medicine and Oregon Health & Science University, the new work was designed to advance ways of testing and predicting biological processes, drug responses and other cell dynamics before undertaking more costly experiments with live cells.

With further work on the program, the researchers say it could eventually serve as a “digital twin” for testing any drug’s effect on cancer or other conditions, gene environment interactions during brain development, or any number of dynamic cellular molecular processes in people where such studies are not possible.

Funded primarily by the Jayne Koskinas Ted Giovanis Foundation and the National Institutes of Health, and leveraging prior knowledge and data funded by the Lustgarten Foundation and National Foundation for Cancer Research, the new study and examples of cell simulations are described online July 25 in the journal Cell.

Building electronics that don’t die: Columbia’s breakthrough at CERN

Deep beneath the Swiss-French border, the Large Hadron Collider unleashes staggering amounts of energy and radiation—enough to fry most electronics. Enter a team of Columbia engineers, who built ultra-rugged, radiation-resistant chips that now play a pivotal role in capturing data from subatomic particle collisions. These custom-designed ADCs not only survive the hostile environment inside CERN but also help filter and digitize the most critical collision events, enabling physicists to study elusive phenomena like the Higgs boson.

New approach enables independent lasers to cooperate for unified light emission

Known for their ability to seamlessly integrate into semiconductor chips, VCSELs (vertical cavity surface-emitting lasers) are used in everything from computer mice to face-scanning hardware in smartphones. However, these devices are still very much an active field of research, and many researchers believe there are still important applications waiting to be discovered.

The laboratory of Kent Choquette, a professor of electrical and computer engineering in The Grainger College of Engineering at the University of Illinois Urbana-Champaign, has developed a new design in which light from multiple VCSELs combines to form a single coherent pattern called a “supermode.”

As the researchers report in the IEEE Photonics Journal, the result is a controllable pattern brighter than what is possible with an array of independent devices, adding to the capabilities of these already-versatile devices.

Cost effective method developed for co-packaging photonic and electronic chips

The future of digital computing and communications will involve both electronics—manipulating data with electricity—and photonics, or doing the same with light. Together the two could allow exponentially more data traffic across the globe in a process that is also more energy efficient.

“The bottom line is that integrating photonics with electronics in the same package is the transistor for the 21st century. If we can’t figure out how to do that, then we’re not going to be able to scale forward,” says Lionel Kimerling, the Thomas Lord Professor of Materials Science and Engineering at MIT and director of the MIT Microphotonics Center.

Enter FUTUR-IC, a new research team based at MIT. “Our goal is to build a microchip industry value chain that is resource-efficient,” says Anu Agarwal, head of FUTUR-IC and a principal research scientist at the Materials Research Laboratory (MRL).

In a first, transmon qubit achieves a coherence time of one millisecond

A team of researchers in Finland has set a new world record for how long a quantum bit, known as a qubit, can hold onto its information.

They have pushed the coherence time of a superconducting transmon qubit to a full millisecond at best, with a median time of half a millisecond. That might sound brief, but in the world of quantum computing, it’s a massive improvement that could change the game.

Longer coherence times mean qubits can run more operations and quantum computers can perform more calculations before errors start to appear.

/* */