Toggle light / dark theme

Scientists develop ‘full-spectrum’ 6G chip that could transfer data at 100 gigabits per second — 10,000 times faster than 5G

But now, researchers have integrated the entire wireless spectrum covering nine radio-frequency (RF) bands — from 0.5 to 110 GHz — into a chip measuring just 0.07 by 0.43 inches (1.7 by 11 millimeters).

The new chip is also capable of achieving a data transmission rate of more than 100 gigabits per second, including on low bands used in rural areas, where speeds can be notoriously slow. Communication also remained stable across the entire spectrum, the researchers found. They revealed their research in a study published Aug. 27 in the journal Nature.

Ultra-flat optic pushes beyond what was previously thought possible

Cameras are everywhere. For over two centuries, these devices have grown increasingly popular and proven to be so useful, they have become an indispensable part of modern life.

Today, they are included in a vast range of applications—everything from smartphones and laptops to security and to cars, aircraft, and satellites imaging Earth from high above. And as an overarching trend toward miniaturizing mechanical, optical, and electronic products continues, scientists and engineers are looking for ways to create smaller, lighter, and more energy-efficient cameras for these technologies.

Ultra-flat optics have been proposed as a solution for this engineering challenge, as they are an alternative to the relatively bulky lenses found in cameras today. Instead of using a curved lens made out of glass or plastic, many ultra-flat optics, such as metalenses, use a thin, flat plane of microscopic nanostructures to manipulate light, which makes them hundreds or even thousands of times smaller and lighter than conventional camera lenses.

Microscopes can now watch materials go quantum with liquid helium

A new specimen holder gives scientists more control over ultra-cold temperatures, enabling the study of how materials acquire properties useful in quantum computers.

Scientists can now reliably chill specimens near absolute zero for over 10 hours while taking images resolved to the level of individual atoms with an . The new capability comes from a liquid-helium-cooled sample holder designed by a team of scientists and engineers at the University of Michigan and Harvard University.

Conventional instruments can usually maintain such an extreme temperature, about-423 degrees Fahrenheit or 20 degrees above absolute zero, for a few minutes, capping out at a few hours. But longer periods of time are needed to take atomic-resolution images of candidate materials for advanced technologies.

Habitable planet potential increases in the outer galaxy

What can the galactic habitable zone (GHZ), galactic regions where complex life is hypothesized to be able to evolve, teach scientists about finding the correct stars that could have habitable planets?

This is what a recent study accepted for publication in Astronomy & Astrophysics hopes to address as an international team of researchers investigated a connection between the migration of stars, commonly called stellar migration, and what this could mean for finding habitable planets within our galaxy. This study has the potential to help scientists better understand the astrophysical parameters for finding habitable worlds beyond Earth and even life as we know it. The findings are published on the arXiv preprint server.

For the study, the researchers used a series of computer models to simulate how stellar migration could influence the location and parameters of the GHZ. The models included scenarios both with and without stellar migration to ascertain the statistical probabilities for terrestrial (rocky) planets forming around stars throughout the galaxy. The researchers also used a chemical evolution model to ascertain the formation and evolution of our galaxy, specifically regarding its thickness.

Uniting the light spectrum on a single microchip

Focused laser-like light that covers a wide range of frequencies is highly desirable for many scientific studies and for many applications, for instance, quality control of manufacturing semiconductor electronic chips. But creating such broadband and coherent light has been difficult to achieve with anything but bulky, energy-hungry tabletop devices.

Now, a Caltech team led by Alireza Marandi, a professor of electrical engineering and applied physics at Caltech, has created a tiny device capable of producing an unusually wide range of laser-light frequencies with ultra-high efficiency—all on a microchip. The work has potential in areas ranging from communications and imaging to spectroscopy, where the light would aid the detection of atoms and molecules in various settings.

The researchers describe the new nanophotonic device and approach in a paper that appears in the journal Nature Photonics. The lead author of the paper, “Multi-Octave Frequency Comb from an Ultra-Low-Threshold Nanophotonic Parametric Oscillator,” is Ryoto Sekine (Ph. D.), who completed the work while a graduate student in Marandi’s lab.

DNA cassette tapes could solve global data storage problems

Our increasingly digitized world has a data storage problem. Hard drives and other storage media are reaching their limits, and we are creating data faster than we can store it. Fortunately, we don’t have to look too far for a solution, because nature already has a powerful storage medium with DNA (deoxyribonucleic acid). It is this genetic material that Xingyu Jiang at the Southern University of Science and Technology in China and colleagues are using to create DNA storage cassettes.

Nano-switch achieves first directed, gated flow of excitons

A new nanostructure acts like a wire and switch that can, for the first time, control and direct the flow of quantum quasiparticles called excitons at room temperature.

The transistor-like switch developed by University of Michigan engineers could speed up or even enable circuits that run on excitons instead of electricity—paving the way for a new class of devices.

Because they have no , excitons have the potential to move without the losses that come with moving electrically charged particles like electrons. These losses drive cell phones and computers to generate heat during use.

Narrow-linewidth laser on a chip sets new standard for frequency purity

A record-breaking development in laser technology could help support the development of smaller, cheaper, more easily-fabricated optical and quantum technologies, its inventors say.

Researchers from the University of Glasgow have designed and built a narrow-linewidth laser on a single, fully integrated microchip that achieves the best performance ever recorded in semiconductor lasers of its type.

It could help overcome many of the barriers which have prevented previous generations of this type of monolithic semiconductor from being more widely adopted.

/* */