Toggle light / dark theme

From computer chips to image sensors in cameras, today’s technology is overwhelmingly based on a semiconductor called silicon. This technology has been shrinking for decades—think of early room-sized computers compared to today’s desktops—but physical limitations will soon prevent further improvement.

That’s why scientists and engineers are preparing for a new generation of technology—one based on quantum mechanics.

The electrons in so-called “” behave differently than those in silicon, enabling more complex behaviors, like magnetism and superconductivity, that are useful for future quantum technologies.

Vanishing atoms can ruin quantum calculations. Scientists have a new plan to locate leaks.

Quantum computers face a major challenge: atoms, which serve as their qubits, can vanish without warning, corrupting calculations. Researchers have developed a groundbreaking method to detect this problem in neutral-atom quantum systems without disrupting their state. This discovery helps overcome a key hurdle in making quantum computing.

Performing computation using quantum-mechanical phenomena such as superposition and entanglement.

Dr. Philip Shiu.
EON Systems.

Presentation and Q&A
At the Carboncopies Foundation February 2025 workshop:

The brain emulation challenge: functionalizing brain data, ground-truthing and the role of artificial data in advancing neuroscience.

Google’s X company is working on the next generation of Taara, a silicon photonics technology designed to bring fast broadband speeds to some underdeveloped areas of the world. According to statements by Taara general manager Mahesh Krishnaswamy, this light-based solution could offer unprecedented connectivity opportunities in any part of the world – and beyond.

This quantum light manipulation breakthrough paves the way for unprecedented technologies.

Scientists from the University of Basel and the University of Sydney successfully manipulated and identified interacting packets of light energy, or photons, with unprecedented precision.

This breakthrough, published in Nature Physics, marks the first-ever observation of stimulated light emission at the single-photon level—a phenomenon first predicted by Albert Einstein in 1916.

By measuring the time delay between photon interactions, researchers demonstrated how photons could become entangled in a “two-photon bound state,” opening up new possibilities for quantum computing and enhanced measurement techniques.

This discovery has profound implications for photonic quantum computing and metrology, particularly in fields like biological microscopy, where high-intensity light can damage delicate samples. Dr. Sahand Mahmoodian, a leading researcher on the project, emphasized that harnessing quantum light could lead to more precise measurements with fewer photons. Meanwhile, tech companies like PsiQuantum and Xanadu are already exploring how this research could contribute to fault-tolerant quantum computing. As scientists refine their ability to manipulate quantum light, the door opens to a future of more powerful computing, ultra-sensitive sensors, and revolutionary advancements in technology.

Learn more.


PsiQuantum has detailed the photonic quantum chips and cooling system it plans to use for a quantum computer with a million qubits.

The Omega quantum photonic chipset is purpose-built for utility-scale quantum computing and produced by Global Foundries in New York on 300mm wafer. The technology was detailed in a paper in Nature submitted last June and published this week.

This paper shows high-fidelity qubit operations, and a simple, long-range chip-to-chip qubit interconnect – a key enabler to scale that has remained challenging for other technologies.

Microsoft’s Majorana 1 quantum chip introduces a breakthrough Topological Core, enabling stable and scalable qubits.

By leveraging topoconductors, this innovation paves the way for million-qubit machines capable of solving complex scientific and industrial challenges. With DARPA

Formed in 1958 (as ARPA), the Defense Advanced Research Projects Agency (DARPA) is an agency of the United States Department of Defense responsible for the development of emerging technologies for use by the military. DARPA formulates and executes research and development projects to expand the frontiers of technology and science, often beyond immediate U.S. military requirements, by collaborating with academic, industry, and government partners.

Researchers have developed a battery capable of converting nuclear energy into electricity through light emission, according to a new study.

Nuclear power plants generate about 20% of the electricity in the United States and produce minimal greenhouse gas emissions. However, they also generate radioactive waste, which poses risks to human health and the environment, making safe disposal a significant challenge.

To address this, a team led by researchers from The Ohio State University designed a system that harnesses ambient gamma radiation to generate electricity. By combining scintillator crystals—high-density materials that emit light when exposed to radiation—with solar cells, they successfully converted nuclear energy into an electric output powerful enough to run microelectronics, such as microchips.