Toggle light / dark theme

Improved slime mold algorithm boosts efficiency in e-commerce cloud data migration

As e-commerce platforms grow ever more reliant on cloud computing, efficiency and sustainability have come to the fore as urgent pressures on development. A study published in the International Journal of Reasoning-based Intelligent Systems has introduced an innovative approach to the problem based on a slime mold algorithm (SMA). The work could improve both performance and energy efficiency for e-commerce systems.

At the core of the work is the development of BOSMA—the Balanced Optimization Slime Mold Algorithm. The SMA is a heuristic optimization technique inspired by the natural behavior of slime molds.

Slime molds are useful models for algorithms because they excel at finding efficient paths through complex environments and adapting to changing conditions. Moreover, they do so without any central control system. They can explore their surroundings by sending out multiple tendrils, pseudopodia, in different directions, adjusting their shape and connections in response to feedback such as nutrient availability or obstacles.

Hiding secret codes in light can protect against fake videos

Fact-checkers may have a new tool in the fight against misinformation.

A team of Cornell researchers has developed a way to “watermark” light in videos, which they can use to detect if video is fake or has been manipulated.

The idea is to hide information in nearly-invisible fluctuations of lighting at important events and locations, such as interviews and press conferences or even entire buildings, like the United Nations Headquarters. These fluctuations are designed to go unnoticed by humans, but are recorded as a hidden watermark in any video captured under the special lighting, which could be programmed into computer screens, photography lamps and built-in lighting. Each watermarked light source has a secret that can be used to check for the corresponding watermark in the video and reveal any malicious editing.

Flexible transmitter chip could make wireless devices more energy efficient

Researchers from MIT and elsewhere have designed a novel transmitter chip that significantly improves the energy efficiency of wireless communications, which could boost the range and battery life of a connected device.

Their approach employs a unique scheme to encode digital data into a , which reduces the amount of error in the and leads to more reliable communications.

The compact, flexible system could be incorporated into existing internet-of-things devices to provide immediate gains, while also meeting the more stringent efficiency requirements of future 6G technologies.

First Quantum Bit Made of Antimatter Captured in Physics Breakthrough

CERN scientists have analyzed a particle of antimatter isolated in an undecided quantum state known as a superposition for the first time.

While the quantum behavior of ordinary matter has been studied extensively and even used as the basis of quantum computers in the form of qubits, the breakthrough goes far beyond technological applications, potentially helping physicists understand why we even exist today.

The team suspended an antiproton – the antimatter counterpart of the proton – in a system of electromagnetic traps, and suppressed environmental interference that would mess with the particle’s delicate quantum state.

Revolutionizing 2D Electronics: Freestanding HZO Membranes Unlock High-κ Integration for Next-Gen Transistors

In a significant advancement for nanoelectronics, an international team of researchers from National Chung Hsing University, Kansai University, and National Cheng Kung University has developed a new strategy to integrate freestanding hafnium zirconium oxide (HZO) membranes into 2D field-effect transistors (FETs). This innovation, published in Nature Electronics, promises to overcome one of the main bottlenecks in the adoption of 2D semiconductors: the lack of scalable, high-κ dielectric integration.

Why 2D Semiconductors Need Better Gate Dielectrics

Two-dimensional semiconductors like molybdenum disulfide (MoS₂) have long been heralded as successors to silicon, offering exceptional electrical properties at atomically thin dimensions. However, their commercialization in logic devices has stalled due to a critical integration challenge: embedding a gate dielectric that both insulates and enables effective gate control.

Molecular imaging uncovers hidden flaws in plastics used for electronics

A new study uncovers revealing insights into how plastic materials used in electronics are formed, and how hidden flaws in their structure could be limiting their performance.

Conjugated polymers are a type of plastic that conduct electricity and are used in optoelectronics, computing, biosensors, and power generation. The materials are lightweight, low-cost, and can be printed in thin layers onto flexible substrates, making them ideal for next-generation technologies.

An international team of scientists investigated a popular method for making the polymers called aldol condensation, which is praised for being versatile, metal-free, environmentally friendly, and scalable.

Earth’s Gravity Might Be Warping Quantum Mechanics, Say Physicists

Scientists propose a groundbreaking experiment using quantum computers and atomic clocks to test whether gravity alters the fundamental rules of quantum theory. A recent study featured in the journal PRX Quantum reveals how a network of quantum computers equipped with optical clocks can be used t

Comparative Performance Analysis of Femtosecond-Laser-Written Diode-Pumped Pr: LiLuF4 Visible Waveguide Lasers

In crystalline materials, the fabrication of optical waveguides by femtosecond laser irradiation is not as easy as in glasses [7] because, in many cases, it is not possible to produce a refractive index increase, able to directly confine and guide light along a certain trajectory. On the contrary, the most typical situation is that the refractive index of the crystal is decreased by the effect of the high intensity of the laser, but even in those cases it can be used anyway to design efficient waveguides [22].

In our study, we designed and fabricated waveguides with different configurations and geometries in the search for the best performance, helping us to understand the confinement mechanisms in Pr: LLF. The following waveguide types were tested:

Quantum computing occurs naturally in the human brain, study finds

Kurian’s group believes these large tryptophan networks may have evolved to take advantage of their quantum properties. When cells breathe using oxygen—a process called aerobic respiration—they create free radicals, or reactive oxygen species (ROS). These unstable particles can emit high-energy UV photons, which damage DNA and other important molecules.

Tryptophan networks act as natural shields. They absorb this harmful light and re-emit it at lower energies, reducing damage. But thanks to superradiance, they may also perform this protective function much more quickly and efficiently than single molecules could.

/* */