Toggle light / dark theme

High-quality OLED displays enable screens to emit distinct sounds from individual pixels

A research team has developed the world’s first Pixel-Based Local Sound OLED technology. This breakthrough enables each pixel of an OLED display to simultaneously emit different sounds, essentially allowing the display to function as a multichannel speaker array. The team successfully demonstrated the technology on a 13-inch OLED panel, equivalent to those used in laptops and tablets.

The research has been published in the journal Advanced Science. The team was led by Professor Su Seok Choi of the Department of Electrical Engineering at POSTECH (Pohang University of Science and Technology) and Ph.D. candidate Inpyo Hong of the Graduate Program in Semiconductor Materials and Devices.

Quantum computing and photonics discovery potentially shrinks critical parts by 1,000 times

Researchers have made a discovery that could make quantum computing more compact, potentially shrinking essential components 1,000 times while also requiring less equipment. The research is published in Nature Photonics.

A class of quantum computers being developed now relies on light particles, or photons, created in pairs linked or “entangled” in quantum physics parlance. One way to produce these photons is to shine a laser on millimeter-thick crystals and use optical equipment to ensure the photons become linked. A drawback to this approach is that it is too big to integrate into a computer chip.

Now, Nanyang Technological University, Singapore (NTU Singapore) scientists have found a way to address this approach’s problem by producing linked pairs of photons using much thinner materials that are just 1.2 micrometers thick, or about 80 times thinner than a strand of hair. And they did so without needing additional optical gear to maintain the link between the , making the overall set-up simpler.

‘Intercrystals’ pave the way for greener electronics and quantum technologies

Rutgers University–New Brunswick researchers have discovered a new class of materials—called intercrystals—with unique electronic properties that could power future technologies.

Intercrystals exhibit newly discovered forms of electronic properties that could pave the way for advancements in more efficient electronic components, and environmentally friendly materials, the scientists said.

As described in a report in the science journal Nature Materials, the scientists stacked two ultrathin layers of graphene, each a one-atom-thick sheet of carbon atoms arranged in a hexagonal grid. They twisted them slightly atop a layer of hexagonal boron nitride, a hexagonal crystal made of boron and nitrogen. A subtle misalignment between the layers that formed moiré patterns—patterns similar to those seen when two fine mesh screens are overlaid—significantly altered how electrons moved through the material, they found.

Chip-scale soliton microcombs reach femtosecond precision

Laser frequency combs are light sources that produce evenly spaced, sharp lines across the spectrum, resembling the teeth of a comb. They serve as precise rulers for measuring time and frequency, and have become essential tools in applications such as lidar, high-speed optical communications, and space navigation. Traditional frequency combs rely on large, lab-based lasers. However, recent advancements have led to the development of chip-scale soliton microcombs, which generate ultrashort pulses of light within microresonators.

One of the key challenges for soliton microcombs is jitter, which refers to tiny fluctuations in the timing of their light pulses. These fluctuations, caused by or internal instabilities, can degrade the precision and reliability of systems that rely on exact timing. For example, in lidar, jitter can cause uncertainty in distance measurements, and in high-speed data transmission, it can introduce signal distortion and reduce data integrity.

As reported in Advanced Photonics Nexus, an international research team has addressed this problem by developing a new platform based on dispersion-managed (DM) silicon nitride (Si3N4) microresonators operating at an 89 GHz repetition rate.

Intel’s Memory Leak Nightmare: 5,000 Bytes per Second in the Hands of Hackers

Computer scientists at ETH Zurich have uncovered a serious flaw in Intel processors that could let attackers steal sensitive information by exploiting how modern chips predict upcoming actions. Using specially designed sequences of instructions, hackers can bypass security boundaries and gradually read the entire memory of a shared processor. This vulnerability affects a wide range of Intel chips used in personal computers, laptops, and cloud servers.

Eco-friendly advance brings CO₂ ‘breathing’ batteries closer to reality

Scientists at the University of Surrey have made a breakthrough in eco-friendly batteries that not only store more energy but could also help tackle greenhouse gas emissions. Lithium–CO2 “breathing” batteries release power while capturing carbon dioxide, offering a greener alternative that may one day outperform today’s lithium-ion batteries.

Until now, lithium-CO2 batteries have faced setbacks in efficiency—wearing out quickly, failing to recharge and relying on expensive rare materials such as platinum.

However, researchers from Surrey have found a way to overcome these issues by using a low-cost catalyst called cesium phosphomolybdate (CPM). Using computer modeling and , tests showed this simple change allowed the battery to store significantly more energy, charge with far less power and run for over 100 cycles.

Quantum heat circuits: A diode framework for quantum thermal transistors

Transistors are the fundamental building blocks behind today’s electronic revolution, powering everything from smartphones to powerful servers by controlling the flow of electrical currents. But imagine a parallel world, where we could apply the same level of control and sophistication—not to electricity, but to heat.

This is precisely the frontier being explored through quantum thermal , devices designed to replicate electronic transistor functionality at the quantum scale, but for heat.

The rapidly growing field of quantum thermodynamics has been making impressive strides, exploring how heat and energy behave when quantum mechanical effects dominate. Innovations such as quantum thermal diodes, capable of directing in a specific direction, and quantum thermal transistors, which amplify heat flows similarly to how electronic transistors amplify electric signals, are groundbreaking examples of this progress.

Overlooked electron property opens up new avenues for orbitronics

The orbital angular momentum of electrons has long been considered a minor physical phenomenon, suppressed in most crystals and largely overlooked. Scientists at Forschungszentrum Jülich have now discovered that in certain materials it is not only preserved but can even be actively controlled. This is due to a property of the crystal structure called chirality, which also influences many other processes in nature.

The discovery has the potential to lead to a new class of electronic components capable of transmitting information with exceptional robustness and energy efficiency.

From electronics to spintronics, and now to orbitronics: In classical electronics, it is primarily the charge of the electron that counts. In modern approaches such as and spintronics, the focus has shifted to the electron’s spin.