Toggle light / dark theme

Analog computing platform uses synthetic frequency domain to boost scalability

Analog computers, computing systems that represent data as continuous physical quantities, such as voltage, frequency or vibrations, can be significantly more energy-efficient than digital computers, which represent data as binary states (i.e., 0s and 1s). However, upscaling analog computing platforms is often difficult, as their underlying components can behave differently in larger systems.

Researchers at Virginia Tech, Oak Ridge National Laboratory and the University of Texas at Dallas have developed a new synthetic domain approach, a technique to encode information at different frequencies in a single device that could enable upscaling analog computers without the need to add more physical components.

Their proposed approach, outlined in a paper published in Nature Electronics, was used to develop a compact and highly efficient analog computing platform based on lithium niobate integrated nonlinear phononics.

New, improved 3,000-qubit neutral atom array system reloads atoms continuously for more than two hours

The neutral atom array architecture for quantum computing has been rapidly advancing over the last several years, and a recent study published in Nature has just revealed another step forward for this technology. The team of Harvard researchers involved in this study have engineered a 3,000-qubit neutral atom array system capable of operating continuously for more than two hours, which goes far beyond typical trap lifetimes of only about 60 seconds.

Typically, neutral atom array systems arrange , like rubidium, in an array using highly focused , called optical tweezers. The are arranged and held under vacuum conditions and then used as qubits to perform and other operations. However, the procedure results in the loss of some atoms.

“An outstanding challenge associated with these systems involves atom loss, originating from errors in entangling operations, state-readout, and finite trap lifetime. Atom losses necessitate pulsed operation which limits the performance of these quantum systems, including the circuit depth of quantum computation, accuracy of , and the rate of entanglement generation in quantum networking protocols,” the study authors explain.

New design tackles integer factorization problems through digital probabilistic computing

Probabilistic Ising machines (PIMs) are advanced and specialized computing systems that could tackle computationally hard problems, such as optimization or integer factorization tasks, more efficiently than classical systems. To solve problems, PIMs rely on interacting probabilistic bits (p-bits), networks of interacting units of digital information with values that randomly fluctuate between 0 and 1, but that can be biased to converge to yield desired solutions.

Microendovascular Neural Recording from Cortical and Deep Vessels with High Precision and Minimal Invasiveness

Interesting paper where microintravascular electrodes were inserted into cortical veins of pigs to record somatosensory and visual neuronal activity as well as selectively stimulate motor areas. Compared to electrocorticography, this is a less invasive approach with similar capabilities. #neurotech [ https://doi.org/10.1002/aisy.202500487](https://doi.org/10.1002/aisy.202500487)


Intravascular electroencephalography (ivEEG) with microintravascular electrodes enhances neural monitoring, functional mapping, and brain–computer interfaces (BCIs), offering a minimally invasive approach to assess cortical activities; however, this approach remains unrealized. Current ivEEG methods using electrode-attached stents are limited to recording from large vessels, such as the superior sagittal sinus (SSS), restricting access to cortical regions essential for precise BCI control, such as those for hand and mouth movements. Here, ivEEG signals from small and soft cortical veins (CV-ivEEGs) in eight pigs using microintravascular electrodes are recorded, achieving higher resting-state signal power and greater spatial resolution of somatosensory evoked potentials (SEPs) compared to SSS-based ivEEG. Additionally, ivEEG recorded from deep veins clearly captures visual evoked potentials. Furthermore, comparisons between CV-ivEEG and electrocorticography (ECoG) using epidural and subdural electrodes in two pigs demonstrate that CV-ivEEG captures cortical SEPs comparable to ECoG. Targeted electrical stimulation via cortical vein electrodes induces specific contralateral muscle contractions in five anesthetized pigs, confirming selective motor-region stimulation with minimal invasiveness. The findings suggest that ivEEG with microintravascular electrodes is capable of accessing diverse cortical areas and capturing localized neural activity with high signal fidelity for minimally invasive cortical mapping and BCI.

Lasers just made atoms dance, unlocking the future of electronics

Scientists at Michigan State University have discovered how to use ultrafast lasers to wiggle atoms in exotic materials, temporarily altering their electronic behavior. By combining cutting-edge microscopes with quantum simulations, they created a nanoscale switch that could revolutionize smartphones, laptops, and even future quantum computers.

A scalable and accurate tool to characterize entanglement in quantum processors

Quantum computers, computing systems that process information leveraging quantum mechanical effects, could soon outperform classical computers in various optimization and computational tasks.

To enable their reliable operation in real-world settings, however, engineers and physicists should be able to precisely control and understand the quantum states underpinning the functioning of .

The research team led by Dapeng Yu at Shenzhen International Quantum Academy, Tongji University and other institutes in China recently introduced a new mathematical tool that could be used to characterize quantum states in quantum processors with greater accuracy.

Compact phononic circuits guide sound at gigahertz frequencies for chip-scale devices

Phononic circuits are emerging devices that can manipulate sound waves (i.e., phonons) in ways that resemble how electronic circuits control the flow of electrons. Instead of relying on wires, transistors and other common electronic components, these circuits are based on waveguides, topological edge structures and other components that can guide phonons.

Phononic circuits are opening new possibilities for the development of high-speed communication systems, and various other technologies.

To be compatible with existing infrastructure, including current microwave communication systems, and to be used to develop highly performing quantum technologies, these circuits should ideally operate at gigahertz (GHz) frequencies. This essentially means that the sound waves they generate and manipulate oscillate billions of times per second.

Researchers are first to image directional atomic vibrations

Researchers at the University of California, Irvine, together with international collaborators, have developed a new electron microscopy method that has enabled the first-ever imaging of vibrations, or phonons, in specific directions at the atomic scale.

In many crystallized materials, atoms vibrate differently along varying directions, a property known as vibrational anisotropy, which strongly influences their dielectric, thermal and even superconducting behavior. Gaining a deeper understanding of this anisotropy allows engineers to tailor materials for use in electronics, semiconductors, optics and quantum computing.

In a paper published in Nature, the UC Irvine-led team details the workings of its momentum-selective electron energy-loss spectroscopy technique and its power to unveil the fundamental lattice dynamics of functional materials.

‘Drop-printing’ shows potential for constructing bioelectronic interfaces that conform to complex surfaces

With the rapid development of wearable electronics, neurorehabilitation, and brain-machine interfaces in recent years, there has been an urgent need for methods to conformally wrap thin-film electronic devices onto biological tissues to enable precise acquisition and regulation of physiological signals.

Conventional methods typically rely on external pressure to force devices onto conformal contact. However, when applied to uneven three-dimensional surfaces such as skin, brain, or nerves, they generate significant internal stress which can easily damage fragile metal circuits and inorganic chips. This is an obstacle to the advancement of flexible electronics.

In a study published in Science, Prof. Song Yanlin’s team from the Institute of Chemistry of the Chinese Academy of Sciences, along with collaborators from Beijing Tiantan Hospital, Nanyang Technological University, and Tianjin University, propose a new film transfer strategy named as drop-printing, which has potential applications in bioelectronics, flexible displays, and micro-/nano-manufacturing.

/* */