Toggle light / dark theme

Quantum heat circuits: A diode framework for quantum thermal transistors

Transistors are the fundamental building blocks behind today’s electronic revolution, powering everything from smartphones to powerful servers by controlling the flow of electrical currents. But imagine a parallel world, where we could apply the same level of control and sophistication—not to electricity, but to heat.

This is precisely the frontier being explored through quantum thermal , devices designed to replicate electronic transistor functionality at the quantum scale, but for heat.

The rapidly growing field of quantum thermodynamics has been making impressive strides, exploring how heat and energy behave when quantum mechanical effects dominate. Innovations such as quantum thermal diodes, capable of directing in a specific direction, and quantum thermal transistors, which amplify heat flows similarly to how electronic transistors amplify electric signals, are groundbreaking examples of this progress.

Overlooked electron property opens up new avenues for orbitronics

The orbital angular momentum of electrons has long been considered a minor physical phenomenon, suppressed in most crystals and largely overlooked. Scientists at Forschungszentrum Jülich have now discovered that in certain materials it is not only preserved but can even be actively controlled. This is due to a property of the crystal structure called chirality, which also influences many other processes in nature.

The discovery has the potential to lead to a new class of electronic components capable of transmitting information with exceptional robustness and energy efficiency.

From electronics to spintronics, and now to orbitronics: In classical electronics, it is primarily the charge of the electron that counts. In modern approaches such as and spintronics, the focus has shifted to the electron’s spin.

Researchers Used a One-Atom Quantum Computer to Simulate Real Molecules Over Time

We also simulated “open-system” dynamics, where the molecule interacts with its environment. This is typically a much harder problem for classical computers.

By injecting controlled noise into the ion’s environment, we replicated how real molecules lose energy. This showed environmental complexity can also be captured by quantum simulation.

Computational strategy reveals potential new targets for Alzheimer’s drugs

The study revealed genes and cellular pathways that haven’t been linked to Alzheimer’s before, including one involved in DNA repair. Identifying new drug targets is critical because many of the Alzheimer’s drugs that have been developed to this point haven’t been as successful as hoped.

Working with researchers at Harvard Medical School, the team used data from humans and to identify cellular pathways linked to neurodegeneration. This allowed them to identify additional pathways that may be contributing to the development of Alzheimer’s.

Invisible currents at the edge: Study shows how magnetic particles reveal hidden rule of nature

If you’ve ever watched a flock of birds move in perfect unison or seen ripples travel across a pond, you’ve witnessed nature’s remarkable ability to coordinate motion. Recently, a team of scientists and engineers at Rice University discovered a similar phenomenon on a microscopic scale, where tiny magnetic particles driven by rotating fields spontaneously move along the edges of clusters driven by invisible “edge currents” that follow the rules of an unexpected branch of physics.

The research is published in the journal Physical Review Research.

“When I saw the initial data—with streams of particles moving faster along the edges than in the middle—I said ‘these are edge flows’ and we got to work exploring this,” said corresponding author Evelyn Tang, assistant professor of physics and astronomy. “What’s very exciting is that we can explain their emergence using ideas from topological physics, a field that became prominent due to quantum computers and .”

Trapped electrons on quantum fluids and solids offer new route for high-fidelity qubits

Quantum computers hold the potential to revolutionize the possibilities for solving difficult computational problems that would take classical computers many years to resolve. But for those computers to meet their potential, they need working quantum bits, or qubits. The hunt for a better qubit is a major project of researchers around the world, who are trying different materials and methods in their search.

In a study published in Progress in Quantum Electronics, researchers from the FAMU-FSU College of Engineering explored an unconventional and promising approach to building qubits by using quantum fluids and solids.

Their article examined how electrons trapped just above the surfaces of ultraclean quantum fluids and solids such as and solid neon offer a combination of chip-level control and ultra-clean, defect-free environments, presenting a promising path toward scalable, high-fidelity qubits that could overcome key limitations of existing quantum technologies.

Researchers uncover a mechanism enabling glasses to self-regulate their brittleness

Materials with self-adaptive mechanical responses have long been sought after in material science. Using computer simulations, researchers at the Tata Institute of Fundamental Research (TIFR), Hyderabad, now show how such adaptive behavior can emerge in active glasses, which are widely used as models for biological tissues.

The findings, published in the journal Nature Physics, provide new insights—ranging from how cells might regulate their glassiness to aiding in the design of new metamaterials.

Glasses (or amorphous solids) are materials whose components lack any particular ordering. Contrast this with a crystal, where atoms are arranged in neat, repeating patterns on a well-defined lattice. While crystals are ordered and nearly perfect, amorphous materials are defined by their disorder.

Australian researchers use a quantum computer to simulate how real molecules behave

When a molecule absorbs light, it undergoes a whirlwind of quantum-mechanical transformations. Electrons jump between energy levels, atoms vibrate, and chemical bonds shift—all within millionths of a billionth of a second.

These processes underpin everything from photosynthesis in plants and DNA damage from sunlight, to the operation of solar cells and light-powered cancer therapies.

Yet despite their importance, chemical processes driven by light are difficult to simulate accurately. Traditional computers struggle, because it takes vast computational power to simulate this quantum behavior.

Cracking Mars’ Ancient Water Cycle

How much water did Mars have in its ancient past and when did it disappear? This is what a recent study published in Geophysical Research Letters hopes to address as an international team of scientists investigated Mars’ ancient water cycle processes, including its transport mechanisms between the surface and subsurface. This study has the potential to help scientists better understand ancient Mars and whether the Red Planet could have had the ingredients for life as we know it.

For the study, the researchers used computer models to simulate the length of time that liquid water on the surface of Mars billions of years ago required to go from the surface to the subsurface, specifically to mile-deep aquifers. While this same process takes only a few days on Earth, the researchers estimated that it took between 50 to 200 years on Mars for liquid water to go from the surface to the subsurface aquifers.

Researchers are developing world’s first petahertz-speed phototransistor in ambient conditions

What if ultrafast pulses of light could operate computers at speeds a million times faster than today’s best processors? A team of scientists, including researchers from the University of Arizona, are working to make that possible.

In an international effort, researchers from the Department of Physics in the College of Science and the James C. Wyant College of Optical Sciences have demonstrated a way to manipulate electrons in graphene using pulses of light that last less than a trillionth of a second. By leveraging a quantum effect known as tunneling, they recorded electrons bypassing a physical barrier almost instantaneously, a feat that redefines the potential limits of computer processing power.

A study published in Nature Communications highlights how the technique could lead to processing speeds in the petahertz range—over 1,000 times faster than modern computer chips.