Toggle light / dark theme

Decoding the molecular, cellular, and functional heterogeneity of zebrafish intracardiac nervous system

Although the heart has its own nervous system, its organization and functionality remain largely unknown. Here, the authors reveal the molecular, chemical, and functional diversity of neurons within the intracardiac nervous system and their role in controlling the heart’s rhythm in the zebrafish.

JWST captures its first direct images of carbon dioxide outside solar system

The James Webb Space Telescope has captured its first direct images of carbon dioxide in a planet outside the solar system in HR8799, a multiplanet system 130 light-years away that has long been a key target for planet formation studies.

The observations provide strong evidence that the system’s four giant planets formed in much the same way as Jupiter and Saturn, by slowly building solid cores. They also confirm Webb can do more than infer atmospheric composition from starlight measurements—it can directly analyze the chemistry of exoplanet atmospheres.

“By spotting these strong carbon dioxide features, we have shown there is a sizable fraction of heavier elements, such as carbon, oxygen, and iron, in these planets’ atmospheres. Given what we know about the star they orbit, that likely indicates they formed via core accretion, which for planets that we can directly see is an exciting conclusion,” said William Balmer, a Johns Hopkins University astrophysicist who led the work.

Alkyne-tag Raman imaging and sensing of bioactive compounds

Carbon–carbon triple bonds exhibit a distinct Raman response in the region of 1,800–2,800 cm−1, known as the cellularly silent region. This unique chemical signature, coupled with the small size of alkyne moieties, presents these tags as useful imaging alternatives to bulky fluorescent probes. This Primer discusses the various Raman scattering processes used to image alkyne tags in cells, including the optical set-up required, how to choose an alkyne tag and imaging results from different cellular environments.

Common catalyst works by cycling between two different forms, upending a long-held supposition

The process of catalysis—in which a material speeds up a chemical reaction—is crucial to the production of many of the chemicals used in our everyday lives. But even though these catalytic processes are widespread, researchers often lack a clear understanding of exactly how they work.

A new analysis by researchers at MIT has shown that an important industrial synthesis process, the production of vinyl acetate, requires a catalyst to take two different forms, which cycle back and forth from one to the other as the chemical process unfolds.

Previously, it had been thought that only one of the two forms was needed. The new findings are published today in the journal Science, in a paper by MIT graduate students Deiaa Harraz and Kunal Lodaya, Bryan Tang, Ph.D., and MIT professor of chemistry and chemical engineering Yogesh Surendranath.

Microwave pulses can control ion-molecule reactions at near absolute zero

A key objective of ongoing research rooted in molecular physics is to understand and precisely control chemical reactions at very low temperatures. At low temperatures, the chemical reactions between charged particles (i.e., ions) and molecules unfold with highly rotational-state-specific rate coefficients, meaning that the speed at which they proceed strongly depends on the rotational states of the involved molecules.

Researchers at ETH Zürich have recently introduced a new approach to control chemical reactions between ions and molecules at low temperatures, employing microwaves (i.e., with frequencies ranging from 300 MHz to 300 GHz). Their proposed scheme, outlined in a paper published in Physical Review Letters, entails the use of pulses to manipulate molecular rotational-state populations.

“Over the past 10 years, we have developed a method with which ion-molecule reactions can be studied at very low temperatures, below 10 K, corresponding to the conditions in in the , where these types of reactions play a key role,” Valentina Zhelyazkova, corresponding author of the paper, told Phys.org.

Key brain differences can explain why Ritalin helps improve focus in some more than others

Nearly 16 million American adults have been diagnosed with attention deficit hyperactivity disorder (ADHD), but evidence suggests that more than 30% of them don’t respond well to stimulant medications like Ritalin and Adderall.

A new clinical trial provides a surprising explanation for why this may be the case: There are in how our are wired, including the chemical circuits responsible for memory and concentration, according to a new study co-led by the University of Maryland School of Medicine (UMSOM) and performed at the National Institutes of Health (NIH) Clinical Center.

Our brain cells have different types of chemical receptors that work together to produce optimal performance of brain function. Differences in the balance of these receptors can help explain who is likely to benefit from Ritalin and other stimulant medications. That is the finding of the new research published in the Proceedings of the National Academy of Sciences.

3D-printing formula may transform future of foam

From seat cushions to mattresses to insulation, foam is everywhere—even if we don’t always see it. Now, researchers at The University of Texas at Dallas have fused chemistry with technology to create a 3D-printed foam that is more durable and more recyclable than the polymer foam found in many everyday products.

The research, published in RSC Applied Polymers, focused on creating a sturdy but lightweight that could be 3D-printed, a method that is still largely unexplored in commercial manufacturing, said the study’s co-lead author, UT Dallas doctoral student Rebecca Johnson BS’20.

“This is probably the longest project I’ve ever done,” said Johnson, who plans to complete her Ph.D. in chemistry in May. “From start to finish, it was a little over two years. A lot of it was trying to get the polymer formulation correct to be compatible with the 3D printer.”

Scientists unveil breakthrough method to eliminate “Forever Chemicals” from water, transforming waste into graphene

• The process uses flash joule heating to mineralize PFAS, converting them into inert fluoride salts and upcycling waste carbon into high-value graphene.

• This innovative approach offers a cost-effective, scalable, and environmentally friendly solution to a pressing global problem.

• Meanwhile, scientists in Tokyo are exploring sustainable carbon-based materials and membrane distillation to remove PFAS, showcasing promising advancements in water purification technology.

Coconut Oil and Soap: New Chemistry Method Could Cut Drug Costs and Support Sustainability

Researchers at the University of Missouri, in collaboration with Novartis Pharmaceuticals, have developed a groundbreaking and environmentally friendly electrochemistry technique. This new method uses engineered “soapy” water, micelles made from natural amino acids and coconut oil, combined with electricity to drive chemical reactions in a safer, more sustainable way.

Unlike traditional electrochemical processes that rely on toxic solvents and electrolytes, this approach offers a non-toxic alternative. Led by Associate Professor Sachin Handa and graduate student Karanjeet Kaur, the team’s innovation could significantly reduce the cost of pharmaceutical manufacturing and advance clean energy technologies. It also shows promise in tackling environmental challenges, such as removing persistent “forever chemicals” like per-and polyfluoroalkyl substances (PFAS) from water.

These ball-shaped structures have two sides: one that mixes with water and the other that repels it. Their unique design allowed researchers to make electrochemical reactions more efficient by combining the traditional roles of solvents, electrolytes, and reaction boosters into one simple tool. Bonus: The reactions are highly efficient and selective.