Toggle light / dark theme

Recycling wind turbine blade materials to make improved plastics

A new method to recycle wind turbine blades without using harsh chemicals resulted in the recovery of high-strength glass fibers and resins that allowed Washington State University researchers to repurpose the materials to create stronger plastics.

The innovation provides a simple and environmentally friendly way to recycle wind turbine blades to create useful products.

Reporting in the journal, Resource, Conservation, and Recycling, the team of researchers cut the that is commonly used in , called glass fiber-reinforced polymer (GFRP), into approximately two inch-sized blocks. They then soaked the flakes in a bath of low-toxicity organic salt in pressurized, superheated water for about two hours to break down the material. They then repurposed its components to make stronger plastics.

Redox flow battery achieves energy efficiency of 87.9% and longer cycling life with new catalytic electrode

A team of materials scientists, chemical engineers, and environmental scientists affiliated with a host of institutions in China has developed a redox flow battery (RFB) with 87.9% energy efficiency, which can also last for 850 cycles. In their project, published in the journal Nature Communications, the group developed a new kind of catalytic electrode to improve the efficiency of the battery.

Single-atom catalysts transform hydrogenation, improving food and fuel production

A chemical reaction that’s vital to a range of commercial and industrial goods may soon be initiated more effectively and less expensively thanks to a collaboration that included Oregon State University College of Engineering researchers.

The study, published in Nature, involves —adding the diatomic hydrogen molecule, H2, to other compounds.

“Hydrogenation is a critical and diverse reaction used to create food products, fuels, commodity chemicals and pharmaceuticals,” said Zhenxing Feng, associate professor of chemical engineering. “However, for the reaction to be economically viable, a catalyst such as palladium or platinum is invariably required to increase its reaction rate and thus lower cost.”

Earth’s First Crust Was Continental — Long Before Plate Tectonics Began

New research suggests that Earth’s first crust, formed over 4.5 billion years ago, already carried the chemical traits we associate with modern continents. This means the telltale fingerprints of continental crust didn’t need plate tectonics to form, turning a long-standing theory on its head.

Using simulations of early Earth conditions, scientists found that the intense heat and molten environment of the planet’s infancy created these signatures naturally. The finding shakes up how we understand Earth’s evolution and could even influence how we think about crust formation on other planets.

A surprising shift in earth’s history.

Decoding the molecular, cellular, and functional heterogeneity of zebrafish intracardiac nervous system

Although the heart has its own nervous system, its organization and functionality remain largely unknown. Here, the authors reveal the molecular, chemical, and functional diversity of neurons within the intracardiac nervous system and their role in controlling the heart’s rhythm in the zebrafish.

JWST captures its first direct images of carbon dioxide outside solar system

The James Webb Space Telescope has captured its first direct images of carbon dioxide in a planet outside the solar system in HR8799, a multiplanet system 130 light-years away that has long been a key target for planet formation studies.

The observations provide strong evidence that the system’s four giant planets formed in much the same way as Jupiter and Saturn, by slowly building solid cores. They also confirm Webb can do more than infer atmospheric composition from starlight measurements—it can directly analyze the chemistry of exoplanet atmospheres.

“By spotting these strong carbon dioxide features, we have shown there is a sizable fraction of heavier elements, such as carbon, oxygen, and iron, in these planets’ atmospheres. Given what we know about the star they orbit, that likely indicates they formed via core accretion, which for planets that we can directly see is an exciting conclusion,” said William Balmer, a Johns Hopkins University astrophysicist who led the work.

Alkyne-tag Raman imaging and sensing of bioactive compounds

Carbon–carbon triple bonds exhibit a distinct Raman response in the region of 1,800–2,800 cm−1, known as the cellularly silent region. This unique chemical signature, coupled with the small size of alkyne moieties, presents these tags as useful imaging alternatives to bulky fluorescent probes. This Primer discusses the various Raman scattering processes used to image alkyne tags in cells, including the optical set-up required, how to choose an alkyne tag and imaging results from different cellular environments.

Common catalyst works by cycling between two different forms, upending a long-held supposition

The process of catalysis—in which a material speeds up a chemical reaction—is crucial to the production of many of the chemicals used in our everyday lives. But even though these catalytic processes are widespread, researchers often lack a clear understanding of exactly how they work.

A new analysis by researchers at MIT has shown that an important industrial synthesis process, the production of vinyl acetate, requires a catalyst to take two different forms, which cycle back and forth from one to the other as the chemical process unfolds.

Previously, it had been thought that only one of the two forms was needed. The new findings are published today in the journal Science, in a paper by MIT graduate students Deiaa Harraz and Kunal Lodaya, Bryan Tang, Ph.D., and MIT professor of chemistry and chemical engineering Yogesh Surendranath.

Microwave pulses can control ion-molecule reactions at near absolute zero

A key objective of ongoing research rooted in molecular physics is to understand and precisely control chemical reactions at very low temperatures. At low temperatures, the chemical reactions between charged particles (i.e., ions) and molecules unfold with highly rotational-state-specific rate coefficients, meaning that the speed at which they proceed strongly depends on the rotational states of the involved molecules.

Researchers at ETH Zürich have recently introduced a new approach to control chemical reactions between ions and molecules at low temperatures, employing microwaves (i.e., with frequencies ranging from 300 MHz to 300 GHz). Their proposed scheme, outlined in a paper published in Physical Review Letters, entails the use of pulses to manipulate molecular rotational-state populations.

“Over the past 10 years, we have developed a method with which ion-molecule reactions can be studied at very low temperatures, below 10 K, corresponding to the conditions in in the , where these types of reactions play a key role,” Valentina Zhelyazkova, corresponding author of the paper, told Phys.org.

Key brain differences can explain why Ritalin helps improve focus in some more than others

Nearly 16 million American adults have been diagnosed with attention deficit hyperactivity disorder (ADHD), but evidence suggests that more than 30% of them don’t respond well to stimulant medications like Ritalin and Adderall.

A new clinical trial provides a surprising explanation for why this may be the case: There are in how our are wired, including the chemical circuits responsible for memory and concentration, according to a new study co-led by the University of Maryland School of Medicine (UMSOM) and performed at the National Institutes of Health (NIH) Clinical Center.

Our brain cells have different types of chemical receptors that work together to produce optimal performance of brain function. Differences in the balance of these receptors can help explain who is likely to benefit from Ritalin and other stimulant medications. That is the finding of the new research published in the Proceedings of the National Academy of Sciences.