Toggle light / dark theme

Understanding mitochondrial protein import: a revised model of the presequence translocase

Mitochondrial function relies on the precise targeting and import of cytosolic proteins into mitochondrial subcompartments. Most matrix-targeted proteins follow the presequence pathway, which directs precursor proteins across the outer mitochondrial membrane (OMM) via the Translocase of the Outer Membrane (TOM) complex and into the matrix or inner mitochondrial membrane (IMM) via the Translocase of the Inner Membrane 23 (TIM23) complex. While classical biochemical studies provided detailed mechanistic insights into the composition and mechanism of the TIM23 complex, recent cryogenic-electron microscopy (cryo-EM) data challenge these established models and propose a revised model of translocation in which the TIM17 subunit acts as a ‘slide’ for precursor proteins, with Tim23 acting as a structural element. In this review, we summarize existing models, highlighting the questions and data needed to reconcile these perspectives, and enhance our understanding of TIM23 complex function.

Children exposed to brain-harming chemicals while sleeping

Babies and young children may breathe and absorb plasticizers called phthalates, flame retardants, and other harmful chemicals from their mattresses while they sleep, according to a pair of studies published by the University of Toronto in Environmental Science & Technology and Environmental Science & Technology Letters. These chemicals are linked to neurological and reproductive problems, asthma, hormone disruption, and cancer.

“Sleep is vital for brain development, particularly for infants and toddlers. However, our research suggests that many mattresses contain chemicals that can harm kids’ brains,” says senior author Miriam Diamond, professor at the University of Toronto.

“This is a wake-up call for manufacturers and policymakers to ensure our children’s beds are safe and support healthy .”

Silicon-based all-solid-state batteries operating free from external pressure

Si-based all-solid-state batteries face application challenges due to the requirement of high external pressure. Here, authors prepare a double-layered Si-based electrode by cold-pressing and electrochemical sintering that enables all-solid-state batteries operating free from external pressure.

MRI warning as study says injection could cause deadly material to form in body

A chemical injected before MRI scans to help create sharper images may cause some patients to experience a potentially deadly complication in rare cases, a new study suggests.

Researchers from the University of New Mexico found that gadolinium – a toxic rare earth metal used in MRI scans – could mix with oxalic acid found in many foods to precipitate tiny nanoparticles of the metal in human tissues.

The research, published in the journal Magnetic Resonance Imaging, assessed the formation of these nanoparticles associated with potentially deadly health problems in the kidneys and other organs.

DNA Circuits Come Alive: Scientists Build Molecular Robots Inside Living Cells

Since most cells naturally repel DNA, delivering these nanodevices into cells requires specialized techniques, such as transfection methods and transformation protocols. Once inside, cellular factors such as salt concentration, molecular crowding, and heterogeneous environments influence strand displacement reactions. To overcome the limitations of direct delivery, researchers are also developing transcribable RNA nanodevices encoded into plasmids or chromosomes, allowing cells to express these circuits.

Toward Smart DNA Machines and Biocomputers

DNA strand displacement has been applied to the innovation of computational models. By integrating computational principles with DNA strand displacement, the structured algorithms of traditional computing can be combined with random biochemical processes and chemical reactions in biological systems, enabling biocompatible models of computation. In the future, DNA strand displacement may enable autonomously acting DNA nanomachines to precisely manipulate biological processes, leading to quantum leaps in healthcare and life science research.

Water-based battery offers 2,000-cycle stability

A team of chemical and biomolecular engineers, physicists and battery specialists affiliated with several institutions in the U.S. has developed a water-based battery that offers 2,000-cycle stability. In their paper published in the journal Nature Nanotechnology, the group outlines why they believe it could help bridge the gap between aqueous batteries and non-aqueous lithium-ion batteries.

The main advantage of using aqueous batteries is their safety compared to nonaqueous, . They cannot ignite unexpectedly, minimizing fire hazard. The reason that they are not common is their reduction potential limit of aqueous electrolytes, which has restricted their . Also, the current types of electrolytes they use tend to have problems with water shuttling the interface and high impedance.

In this new study, the research team has taken a step toward resolving these problems by improving ion transport and the stability of biphasic electrolytes via lithium ionophores.

New technology helps turn seawater into drinking water

Desalination can offer a relief in probably trillions of dollars of savings for countries even when drought comes.


Water desalination plants could replace expensive chemicals with new carbon cloth electrodes that remove boron from seawater, an important step of turning seawater into safe drinking water.

A study describing the new technology has been published in Nature Water by engineers at the University of Michigan and Rice University.

Complexities of the global plastics supply chain revealed in a trade-linked material flow analysis

Global plastics production is concentrated in oil-producing countries with advanced petrochemical industries, while plastics disposal has shifted from landfill to incineration, with recycling consistently low, according to a global trade-linked material flow analysis of plastics for the year 2022.