Toggle light / dark theme

Novel technology intends to redefine the virtual reality experience by expanding to incorporate a new sensory connection: taste.

The interface, dubbed “e-Taste,” uses a combination of sensors and wireless chemical dispensers to facilitate the remote perception of —what scientists call gustation. These sensors are attuned to recognize molecules like glucose and glutamate—chemicals that represent the five basic tastes of sweet, sour, salty, bitter, and umami. Once captured via an , that data is wirelessly passed to a remote device for replication.

Field testing done by researchers at The Ohio State University confirmed the device’s ability to digitally simulate a range of taste intensities, while still offering variety and safety for the user.

A team of researchers at the George R. Brown School of Engineering and Computing at Rice University has developed an innovative artificial intelligence (AI)-enabled, low-cost device that will make flow cytometry—a technique used to analyze cells or particles in a fluid using a laser beam—affordable and accessible.

The prototype identifies and counts cells from unpurified blood samples with similar accuracy as the more expensive and bulky conventional flow cytometers, provides results within minutes and is significantly cheaper and compact, making it highly attractive for point-of-care clinical applications, particularly in low-resource and rural areas.

Peter Lillehoj, the Leonard and Mary Elizabeth Shankle Associate Professor of Bioengineering, and Kevin McHugh, assistant professor of bioengineering and chemistry, led the development of this new device. The study was published in Microsystems & Nanoengineering.

A battery that’s safer and cheaper than lithium-ion while offering comparable energy density? That sounds like a pipe dream. But such a battery is in fact in the works, using a chemistry of renewables to store over 220 Wh/kg. Singaporean startup Flint believes it has the formula for the most sustainable battery the world has ever seen, capable of replacing lithium for applications like EV power and grid storage. Maybe that is a dream. Or maybe it’s the revolutionary eco-optimized battery of the near-future.

A fully sustainable paper battery that can be recycled and dropped in compost at the end of its life cycle sounds too good to be true. It kicks off a major cynicism alert, and the questions flow like water through a burst dam.

Does it offer such low capacity as to be useless for anything outside a laboratory? No, Flint estimates energy density at 226 Wh/kg, which falls comfortably within the range of existing lithium tech.

Summary: Scientists have developed e-Taste, a novel technology that digitally replicates taste in virtual environments. Using chemical sensors and wireless dispensers, the system captures and transmits taste data remotely, enabling users to experience sweet, sour, salty, bitter, and umami flavors.

In tests, participants distinguished different taste intensities with 70% accuracy, and remote tasting was successfully initiated across long distances. Beyond gaming and immersive experiences, this breakthrough could enhance accessibility for individuals with sensory impairments and deepen our understanding of how the brain processes taste.

The current microelectronics manufacturing method is expensive, slow and energy and resource intensive.

But a Northeastern University professor has patented a new process and printer that not only can manufacture and chips more efficiently and cheaply, it can make them at the nanoscale.

“I thought that there must be an easier way to do this, there must be a cheaper way to do this,” says Ahmed A. Busnaina, the William Lincoln Smith professor and a distinguished university professor at Northeastern University. “We started, basically, with very simple physical chemistry with a very simple approach.”

Kaiming He, a professor in the Department of Electrical Engineering and Computer Science, believes AI can create a common language that lowers barriers between scientific fields and fosters collaboration across scientific disciplines.

“There is no way I could ever understand high-energy physics, chemistry, or the frontier of biology research, but now we are seeing something that can help us to break these walls,” said He.


MIT Associate Professor Kaiming He discusses the role of AI in interdisciplinary collaborations, connecting basic science to artificial intelligence, machine learning, and neural networks.

A platform developed nearly 20 years ago previously used to detect protein interactions with DNA and conduct accurate COVID-19 testing has been repurposed to create a highly sensitive water contamination detection tool.

The technology merges two exciting fields— and nanotechnology—to create a new platform for chemical monitoring. When tuned to detect different contaminants, the technology could detect the metals lead and cadmium at concentrations down to two and one parts per billion, respectively, in a matter of minutes.

The paper was published this week in the journal ACS Nano and represents research from multiple disciplines within Northwestern’s McCormick School of Engineering.

The quantum rules shaping molecular collisions are now coming into focus, offering fresh insights for chemistry and materials science. When molecules collide with surfaces, a complex exchange of energy takes place between the molecule and the atoms composing the surface. But beneath this dizzying complexity, quantum mechanics, which celebrates its 100th anniversary this year, governs the process.

Quantum interference, in particular, plays a key role. It occurs when different pathways that a molecule can take overlap, resulting in specific patterns of interaction: some pathways amplify each other, while others cancel out entirely. This “dance of waves” affects how molecules exchange energy and momentum with surfaces, and ultimately how efficiently they react.

But until now, observing in collisions with heavier molecules like methane (CH4) was nearly impossible because of the overwhelming number of pathways available for the system to take en route to the different collision outcomes. Many scientists have even wondered if all quantum effects would always “wash out” for these processes so that the simpler laws of classical physics, which apply to everyday, “macroscopic” objects, might be enough to describe them.

Yeast cells can be used to convert agricultural and forestry residues, as well as industrial byproducts, into valuable bioproducts. New and unexplored yeast strains may have properties that can enhance the commercial competitiveness of this sustainable production. In a study recently published in Applied and Environmental Microbiology, researchers collected and examined the biotechnological potential of 2,000 West African yeast strains.

The study—the first of its kind—is a collaboration between the University of Nigeria, Chalmers University of Technology, and the University of Gothenburg. It is based on a nationwide collection of samples from fruit, bark, soil, and waterways in Nigeria. This approach, known as bioprospecting, involves exploring various plants or microorganisms in nature to identify properties that can be utilized for different industrial or societal applications.

In this study, researchers searched for new yeast species with the potential use in industrial production of biochemicals, pharmaceuticals, and food ingredients.

In a breakthrough that could transform bioelectronic sensing, an interdisciplinary team of researchers at Rice University has developed a new method to dramatically enhance the sensitivity of enzymatic and microbial fuel cells using organic electrochemical transistors (OECTs). The research was recently published in the journal Device.

The innovative approach amplifies electrical signals by three orders of magnitude and improves signal-to-noise ratios, potentially enabling the next generation of highly sensitive, low-power biosensors for health and .

“We have demonstrated a simple yet powerful technique to amplify weak bioelectronic signals using OECTs, overcoming previous challenges in integrating fuel cells with electrochemical sensors,” said corresponding author Rafael Verduzco, professor of chemical and biomolecular engineering and materials science and nanoengineering. “This method opens the door to more versatile and efficient biosensors that could be applied in medicine, environmental monitoring and even wearable technology.”