Menu

Blog

Archive for the ‘chemistry’ category: Page 23

Oct 5, 2023

Quantum Dots Explained (2023 Nobel Prize in Chemistry)

Posted by in categories: biotech/medical, chemistry, computing, quantum physics, solar power

The 2023 Nobel Prize in Chemistry was awarded to three scientists who discovered and developed quantum dots, which are very small particles that can change color depending on their size. Quantum dots are tiny particles of a special kind of material called a semiconductor. They are so small that they behave differently from normal materials. They can absorb and emit light of different colors depending on their size and shape.

You can think of quantum dots as artificial atoms that can be made in a lab! They have some of the same properties as atoms, such as having discrete energy levels (meaning they can only exist in certain distinct energy states, and they cannot have energy values between these specific levels) and being able to form molecules with other quantum dots. But they also have some unique features that make them useful for many applications, such as displays, solar cells, sensors, and medicine, which I shall discuss later in this story!

To grasp the workings of quantum dots, a bit of quantum mechanics knowledge comes in handy. Quantum mechanics teaches us that these tiny entities can possess only specific amounts of energy, and they transition between these energy levels by absorbing or emitting light. The energy of this light is determined by the difference in energy levels. In typical materials like metals or plastics, energy levels are closely packed, forming continuous bands where electrons can move freely, resulting in less specific light absorption or emission. However, in semiconductors like silicon or cadmium selenide, there’s a gap between these bands known as the “band gap.” Electrons can only jump from one band to another by interacting with light having an energy level that precisely matches the band gap, making semiconductors valuable for creating devices like transistors and LEDs.

Oct 5, 2023

Chemistry Nobel Prize goes to quantum dots that guide surgeons

Posted by in categories: biotech/medical, chemistry, nanotechnology, quantum physics

From LED lights to medical imaging, quantum dots have many varied applications.

The creation of quantum dots earned its developers the Nobel Prize in Chemistry 2023, an invention that could have also been a contender for the Physics Prize. These tiny elements of nanotechnology, which are so miniature that their size dictates their properties, are today used in many useful and practical applications and have even been reported to direct surgeons as they tackle tricky tumor tissue.


Nobel Prize/Twitter.

Continue reading “Chemistry Nobel Prize goes to quantum dots that guide surgeons” »

Oct 5, 2023

Creation of quantum dots wins 2023 chemistry Nobel

Posted by in categories: biotech/medical, chemistry, quantum physics

The award honors three scientists who discovered and built quantum dots, which are now used in everything from TVs to medical tools.

Oct 5, 2023

Scientists illuminate the mechanics of solid-state batteries

Posted by in categories: chemistry, energy

As current courses through a battery, its materials erode over time. Mechanical influences such as stress and strain affect this trajectory, although their impacts on battery efficacy and longevity are not fully understood.

A team led by researchers at the Department of Energy’s Oak Ridge National Laboratory developed a framework for designing solid-state batteries, or SSBs, with mechanics in mind. Their paper, published in Science, reviewed how these factors change SSBs during their cycling.

“Our goal is to highlight the importance of mechanics in performance,” said Sergiy Kalnaus, a scientist in ORNL’s Multiphysics Modeling and Flows group. “A lot of studies have focused on chemical or electric properties but have neglected to show the underlying mechanics.”

Oct 4, 2023

The Nobel Prize in Chemistry 2023

Posted by in categories: biotech/medical, chemistry, quantum physics

Moungi G. Bawendi, Louis E. Brus and Alexei I. Ekimov are awarded the Nobel Prize in Chemistry 2023 for the discovery and development of quantum dots. These tiny particles have unique properties and now spread their light from television screens and LED lamps. They catalyse chemical reactions and their clear light can illuminate tumour tissue for a surgeon.

“Toto, I’ve a feeling we’re not in Kansas anymore,” is a classic quote from the film The Wizard of Oz. Twelve-year-old Dorothy faints onto her bed when her house is swept away by a powerful tornado, but when the house lands again and she steps outside the door, her dog Toto in her arms, everything has changed. Suddenly she is in a magical, technicolour world.

If an enchanted tornado were to sweep into our lives and shrink everything to nano dimensions, we would almost certainly be as astonished as Dorothy in the land of Oz. Our surroundings would be dazzlingly colourful and everything would change. Our gold earrings would suddenly glimmer in blue, while the gold ring on our finger would shine a ruby red. If we tried to fry something on the gas hob, the frying pan might melt. And our white walls – whose paint contains titanium dioxide – would start generating lots of reactive oxygen species.

Oct 4, 2023

Using Nanoparticles to Treat Cancer

Posted by in categories: biotech/medical, chemistry, nanotechnology

PhD candidate at UniSA’s Applied Chemistry and Translational Biomaterials (ACTB) Group, Cintya Dharmayanti, has taken out UniSA’s 2021 Three Minute Thesis (3MT) with a condensed presentation of her research about developing nanoparticles for cancer treatment, potentially leading to more effective treatments and reduced side effects. She will be competing in the 2023 FameLab National Finals with a presentation titled, “Behind enemy lines: Tiny assassins in the war against cancer.

For more from University of South Australia visit: https://www.unisa.edu.au/connect/alumni-network/alumni-news/…Track=true.

Continue reading “Using Nanoparticles to Treat Cancer” »

Oct 4, 2023

A special molecule that violates the laws of physics could lead to limitless energy

Posted by in categories: chemistry, energy, physics

Scientists may have made a major breakthrough in the quest to produce limitless energy. According to a new study published in the journal American Chemical Society, scientists are looking deeper at a molecule known as azulene, which is a blue-light emitting molecule that seems to flout the fundamental rules of photochemistry.

Sign up for the most interesting tech & entertainment news out there.

Oct 3, 2023

Dr. Alex Colville, Ph.D. — Co-Founder and General Partner — age1

Posted by in categories: bioengineering, biotech/medical, chemistry, finance, genetics, life extension

Venture Investing To Catalyze The Next Generation Of Founder-Led, Longevity Biotech Companies — Dr. Alex Colville, Ph.D., Co-Founder and General Partner — age1.


Dr. Alex Colville, Ph.D. is Co-Founder and General Partner of age1 (https://age1.com/), a venture capital firm focused on catalyzing the next generation of founder-led, longevity biotech companies, with a strategy of building a community of visionaries advancing new therapeutics, tools, and technologies targeting aging and age-related diseases.

Continue reading “Dr. Alex Colville, Ph.D. — Co-Founder and General Partner — age1” »

Oct 3, 2023

Physicists who built ultrafast ‘attosecond’ lasers win Nobel Prize

Posted by in categories: biological, chemistry, particle physics, quantum physics

This year’s Nobel Prize in Physics has been awarded to three physicists — Pierre Agostini at Ohio State University, US, Ferenc Krausz at the Max Planck Institute of Quantum Optics in Garching, Germany, and Anne L’Huillier at Lund University, Sweden — for their research into attosecond pulses of light.

Attosecond physics allows scientists to look at the very smallest particles at the very shortest timescales (an attosecond is one-quintillionth of a second, or one-billionth of a nanosecond). The winners all developed experiments to be able to produce these ultrafast laser pulses, which can be used to probe our world at the smallest scales and have applications across chemistry, biology and physics.

The prize was announced this morning by the Royal Swedish Academy of Sciences, in Stockholm, Sweden. The winners share a prize of 11 million Swedish kroner (US$1 million).

Oct 3, 2023

Functional photoacoustic imaging: from nano- and micro- to macro-scale

Posted by in categories: biotech/medical, chemistry, nanotechnology

In the biomedical field, optical characterization of cells and tissues is a valuable tool for understanding physiological mechanisms. Current biomedical optical imaging techniques include fluorescence imaging [1], confocal microscopy [2], optical coherence tomography [3], two-photon microscopy [4], near-infrared spectroscopy [5], and diffuse optical tomography [6]. These techniques have significantly advanced biomedical technology and are widely used for both preclinical and clinical purposes. However, the strong optical scattering within turbid biological tissues fundamentally limits the imaging depth of these pure optical imaging techniques to no deeper than the optical ballistic depth ( 1 mm). Thus, their observation depth is superficial and other imaging modalities are needed to explore deeper layers of biological tissue [7].

Photoacoustic imaging (PAI), a promising biomedical technique, achieves superior imaging depths by forming images from optically-derived acoustic signals, which inherently attenuate less than optical signals in biological tissue [8, 9, 10]. PAI is based on the photoacoustic (PA) effect, in which energy is converted from light to acoustic waves via thermoelastic expansion [11,12,13,14,15,16]. To generate PA waves, a laser beam with a typical pulse width of a few nanoseconds illuminates the target tissue. The optical chromophores in biological tissue absorb the light energy and then release the energy soon after. The energy release can can occur as either light energy with a slightly shifted wavelength or as thermal energy that causes thermoelastic expansion. In PAI, the rapidly alternating thermoelastic expansion and contraction caused by pulsed light illumination generates vibrations in tissue that propagate as acoustic waves called PA waves. The generated PA waves can be detected by conventional ultrasound (US) transducers for image generation. Because PAI and ultrasound imaging (USI) share the same signal reception and image reconstruction principle, the two modalities are technically fully compatible and can be implemented in a single US imaging platform accompanied with pulse laser source [17,18,19,20,21]. Since PAI can capture the photochemical properties of the target site, combining PAI with USI can provide both chemical and structural information about a target tissue.

One distinctive advantage of PAI is that its resolution and imaging depth can be adjusted to suit a specific target area. The resolution of PA signals depends on both the optical focus of the excitation laser and the acoustic focus of the receiving US transducer [22], so images with tuned spatial resolutions and imaging depths can be achieved by modifying the system configuration [23]. PAI’s wide applications to date have included nanoscale surface and organelle imaging [24,25,26,27,28], microscale cellular imaging [29,30,31,32], macroscale small animal imaging [33,34,35], and clinical human imaging [36,37,38].

Page 23 of 272First2021222324252627Last