Toggle light / dark theme

Everyone has their favourite example of a trick that reliably gets a certain job done, even if they don’t really understand why. Back in the day, it might have been slapping the top of your television set when the picture went fuzzy. Today, it might be turning your computer off and on again.

Quantum mechanics — the most successful and important theory in modern physics — is like that. It works wonderfully, explaining things from lasers and chemistry to the Higgs boson and the stability of matter. But physicists don’t know why. Or at least, if some of us think we know why, most others don’t agree.

He has written five well received books on consciousness and developed the Global Neural Workspace model of Consciousness What follows bellow are some of Professor Baars’ observations, Questions (often rhetorical), Quotations, comments, reflections on career and his own theories and my comments (RS) to them as posted to LinkedIn platform. Bernard’s text is in italics. Comments to comments are indicated with ‘BB]’ and responses to those with ‘RS]’. ======== ======== ======== t aware of. ‘ +In the case of non-human animals, we have to get a little bit more creative. We have to decide what behaviors can be used similar sorts of markers as their own form of report.” — David Edelman RS] Or we could ask ~ “is the form of communication between animals sufficient for their needs?” and follow up with “is there Evolutionary Pressure for forms of communication beyond utility?” Those who follow discussion forums may appreciate that what takes an excited discussant 10 paragraphs and 1,000 flaming words can be achieved by a dog with a couple barks and the bearing of teeth ~ which is the more efficient communicative format? BB] Humans seem to have a larger repertoire of uses for consciousness — including language and longer-term planning, self-monitoring and self-reflection, inner speech, metaphor, symbolic representation of experience and deliberate use of imagery. When it comes to sensory consciousness, however, the brain shows little difference between humans and many other mammals. RS] Utility is the key ~ what are those faculties good for? Take them away, individually, and see what we end up with. As such surgical or other intervention is not a practical option we might turn to clinical conditions where patients have such deficits. We may look to Autism, where self reflection, especially in the social context, is lacking. Psychopathy, where there is no inner voice reflecting on social morals. Various other deficits leave individuals with greatly reduced capacity to strive in a community and so we may reflect on the many cognitive faculties we have that appear to have little if any use for the isolated individual. To test this we may examine those who were completely isolated for a significant period of their maturation. There have been cases of children lost in the forest (or dumped there) who survived. Without social stimulation some of heir faculties never matured ~ are these the same faculties that Bernard mentions above? BB] Perhaps half a second after you glance at a word on a page it is converted into a semantic code, to interpret its meaning, guided by the rules of grammar. Going from words to meaning requires a large, unconscious mental lexicon. The lexicon of educated speakers of English contains about 100,000 words. We can understand each one instantly, as soon as it is shown in a sentence that makes sense. Words are complicated things! The OxfordEnglish Dictionary, for example, devotes 75,000 words to clarifying the many different meanings of the word set. RS] The way words are interpreted gives us insight into the how the brain works. If approached in the follow manner we can see what is happening: For each noun there is a denotation and a connotation (the cold dictionary definition and the feeling the word evokes eg ‘Home’). There is a stand alone and contextual meaning of a word that may differ significantly eg “child” and “What are parent-child tree structures in SQL?” The ‘connotation’ is used by the brain to link words into sentences more so than the denotation. If there is a universal background language in the brain, then, it would be based on connotation, not denotation. Why? Because the connotation is innate already and words are appended to pre-existing ‘connotation’ made up of emotion, drives, feelings of all kinds. Watch a child as they acquire their first words ~ they at first use all kinds of signals to convey their intent, their intent is made up of drives, cravings, feelings etc and these become the connotations behind the words they eventually use. s BB] How does the metaphor of a theater help us think about consciousness? RS] The key to many of these approaches, and possible the downfall of at least some of them, is ‘evolvability’. We assume, from our own intuitive experience and logical deduction, that there must be a primary central control. This is a ‘top-down’ approach. But evolution must, by necessity, be ‘bottom-up’. Thus we would expect even the simplest ganglion to have at least some of the properties of consciousness in its own right. Snakes that must rely on different ‘consciousnesses’ for various functions, for instance the pursuing of prey, the killing of prey and the eating of the prey all come from processes so separate that if a mouse after a poisonous bite staggers around and ends up under the snake’s nose the snake will follow the scent trail until it ends up at the mouse, the visual and feeding systems not being able to share information. That system is evolvable, the top-down, apart from religious models, is not evolvable. Thus instead of a separate central process looking down at the senses we consider how the senses and other contributors to cognition swirl together like the funnel of a tornado to form a central consciousness that, in reality, has no independent neural underpinnings of its own due to its emergent nature. Note that ‘life’ also has this nature in that life exists when a collection of chemical reactions ‘swirl’ together, principally in a negative feedback driven homeostatic process, which is most probably also what consciousness actually is… And so we observe how the tornado’s funnel moves around the possible contributors, the audience in the analogy given, rather than a separate process that looks at individual members of the audience. Note that the separate process must consume the information on offer and process it, a ‘infinite regress’ with no end. But the swirling tornado, so to speak, is its own end and does not require any subsequent processes or processing… Note also that any collection of neurons, brain modules or even collections or communities of people can initiate this process.


This link will take you to a page that’s not on LinkedIn.

Biopunk androids replicants.


What happens when humans begin combining biology with technology, harnessing the power to recode life itself.

What does the future of biotechnology and genetic engineering look like? How will humans program biology to create organ farm technology and bio-robots. And what happens when companies begin investing in advanced bio-printing, artificial wombs, and cybernetic prosthetic limbs.

Other topic include: bioengineered food and farming, bio-printing in space, new age living bioarchitecture (eco concrete inspired by coral reefs), bioengineered bioluminescence, cyberpunks and biopunks who experiment underground — creating new age food and pets, the future of bionics, corporations owning bionic limbs, the multi-trillion dollar industry of bio-robots, and bioengineered humans with super powers (Neo-Humans).

As well as the future of biomedical engineering, biochemistry, and biodiversity.

Google’s X “moonshot factory” this week announced its latest graduate. Heritable Agriculture is a data-and machine learning-driven startup aiming to improve how crops are grown.

As the firm noted in an announcement post published Tuesday, plants are incredibly efficient and impressive systems. “Plants are solar powered, carbon negative, self-assembling machines that feed on sunlight and water,” Heritable wrote.

Yet agriculture puts a massive strain on the planet and its resources, accounting for around 25% of anthropogenic greenhouse emissions. It’s the planet’s largest consumer of groundwater and can lead to soil erosion and water pollution via pesticides, fertilizers, and other chemicals.

The structural design of molecular machines and motors endows them with externally controlled directional motion at the molecular scale. Molecular machines based on both interlocked and non-interlocked molecules and driven by a variety of external stimuli such as light, electrical-or thermal energy, and chemical-or redox processes have been reported. With the field moving forward, they were incorporated into surfaces and interfaces to realize amplified directional molecular motion at the nanoscale which can be applied in the control of macroscopic material properties. More recently, molecular motors and molecular machines based on interlocked molecules have been organized into three dimensional materials to expand their functionality in the solid state and enrich their applicability.

Cis-trans photoisomerization is a key process for many processes in biology and materials science, but only careful and time-consuming quantum chemistry methods can describe such reaction in detail. Here, a predictive tool is presented requiring few and affordable calculations, evaluating the efficiency of paradigmatic and modified photoswitches.

Organic photoredox catalysts enable diverse chemical transformations, but predicting their activity is challenging due to complex properties. Now, a two-step data-driven approach is introduced for targeted organic photoredox catalysts synthesis and reaction optimization. Using Bayesian optimization, promising catalysts can be efficiently identified, yielding competitive results with iridium catalysts.

Computational chemistry has remained largely inaccessible to the experimental chemistry community. Here we report the VIRTUAL CHEMIST, a software suite free for academic use, that enables organic chemists without expertise in computational chemistry to perform virtual screening experiments for asymmetric catalyst discovery and design.

A groundbreaking discovery by researchers at the University of California, Los Angeles (UCLA) has challenged a long-standing rule in organic chemistry known as Bredt’s Rule. Established nearly a century ago, this rule stated that certain types of specific organic molecules could not be synthesized due to their instability. UCLA’s team’s findings open the door to new molecular structures that were previously deemed unattainable, potentially revolutionizing fields such as pharmaceutical research.

To grasp the significance of this breakthrough, it’s helpful to first understand some basics of organic chemistry. Organic chemistry primarily deals with molecules made of carbon, such as those found in living organisms. Among these, certain molecules known as olefins or alkenes feature double bonds between two carbon atoms. These double bonds create a specific geometry: the atoms and atom groups attached to them are generally in the same plane, making these structures fairly rigid.

In 1924, German chemist Julius Bredt formulated a rule regarding certain molecular structures called bridged bicyclic molecules. These molecules have a complex structure with multiple rings sharing common atoms, akin to two intertwined bracelet loops. Bredt’s Rule dictates that these molecules cannot have a double bond at a position known as the bridgehead, where the two rings meet. The rule is based on geometric reasons: a double bond at the bridgehead would create such significant structural strain that the molecule would become unstable or even impossible to synthesize.

The fact that the cold, dry Mars of today had flowing rivers and lakes several billion years ago has puzzled scientists for decades. Now, Harvard researchers think they have a good explanation for a warmer, wetter ancient Mars.

Building on prior theories describing the Mars of yore as a hot again, cold again place, a team led by researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have determined the chemical mechanisms by which ancient Mars was able to sustain enough warmth in its early days to host water, and possibly life.

“It’s been such a puzzle that there was on Mars, because Mars is further from the sun, and also, the sun was fainter early on,” said Danica Adams, NASA Sagan Postdoctoral Fellow and lead author of the new paper in Nature Geoscience.