Toggle light / dark theme

Water splitting—breaking water molecules into hydrogen and oxygen—is a promising pathway to sustainable energy. However, this process has long been challenged by the slow chemical kinetics of the oxygen evolution reaction that make hydrogen production inefficient and costly.

An international research team has now uncovered a solution. By using special crystals with unique intrinsic “chiral” structures—meaning they have a distinctive left or right-handed atomic arrangement—researchers have dramatically improved the water splitting process.

The findings are published in the journal Nature Energy.

In a new work, a team from the University of Pennsylvania tracked the impact of alcohol consumption from the age of 20 on brain health and came to disappointing conclusions.


UNIVERSITY PARK, Pa. — Binge drinking in early adults can lead to long-lasting and potentially permanent dysregulation in the brain, according to a new study in mice, led by researchers at Penn State. They found that neurons, cells that transmit information in the brain via electrical and chemical signals, showed changes following binge drinking were similar in many ways to those seen with cognitive decline.

These findings, published in the journal Neurobiology of Aging, reveal that binge drinking early in life may have lasting impacts that are predictive of future health issues, like Alzheimer’s disease and related dementias, the researchers said. The work could inform the development of therapeutics to help combat these changes — particularly in aging populations who may have given up alcohol decades earlier, according to Nikki Crowley, director of the Penn State Neuroscience Institute at University Park, Huck Early Career Chair in Neurobiology and Neural Engineering, assistant professor of biology in the Eberly College of Science, and the leader of the research team.

“We know from previous studies that there are immediate effects of binge drinking on the brain, but we didn’t have any sense of if these changes were long-lasting, or reversible over time,” said Crowley, who is also an assistant professor of biomedical engineering and of pharmacology. “We were interested in understanding if binge drinking during early adulthood may have lasting consequences that are not revealed until later in life — even if drinking had stopped for a very long period of time. This allows us to consider the effects of alcohol on an individual’s holistic health, in terms of their entire life history.”

Oxford Nanopore Technologies and Wasatch BioLabs have joined forces to develop a groundbreaking direct whole-methylome sequencing (dWMS) product. This collaboration addresses the limitations of traditional methylation sequencing methods, such as bisulfite sequencing and methylation microarrays.

By leveraging Oxford Nanopore’s advanced sequencing technology and Wasatch BioLabs’ proprietary methylation assays, the partners aim to offer a more comprehensive and accurate approach to studying epigenetic modifications. dWMS eliminates the need for harsh chemical treatments and PCR amplification, reducing biases and improving genome-wide coverage.

This innovative technology has the potential to revolutionize epigenetic research, providing valuable insights into the role of methylation in various biological processes and diseases. The collaboration between these two companies is poised to drive significant advancements in genomics and precision medicine.

Researchers at Tokyo University of Science have developed a solar cell-based optoelectronic device that mimics human synapses for efficient edge AI processing.


Artificial intelligence (AI) is becoming increasingly useful for the prediction of emergency events such as heart attacks, natural disasters, and pipeline failures. This requires state-of-the-art technologies that can rapidly process data. In this regard, reservoir computing, specially designed for time-series data processing with low power consumption, is a promising option.

It can be implemented in various frameworks, among which physical reservoir computing (PRC) is the most popular. PRC with optoelectronic artificial synapses (junction structures that permit a nerve cell to transmit an electrical or chemical signal to another cell) that mimic human synaptic elements are expected to have unparalleled recognition and processing capabilities akin to the human visual system.

However, PRC based on existing self-powered optoelectronic synaptic devices cannot handle time-series data across multiple timescales, present in signals for monitoring infrastructure, natural environment, and health conditions.

A new study by Curtin University has revealed what could be the oldest direct evidence of ancient hot water activity on Mars. The research focused on a 4.45 billion-year-old zircon grain from the Martian meteorite NWA7034, also called Black Beauty. The analysis found geochemical signatures suggesting that water-rich fluids were present, providing evidence that Mars may have been habitable in the past.

Read Full Story

New research from the Kind Group at the Hubrecht Institute sheds light on how cells repair damaged DNA. For the first time, the team has mapped the activity of repair proteins in individual human cells.

The study demonstrates how these proteins collaborate in so-called “hubs” to repair DNA damage. This knowledge offers opportunities to improve cancer therapies and other treatments where DNA repair is essential. The researchers published their findings in Nature Communications on November 21.

DNA is the molecule that carries our genetic information. It can be damaged by normal cellular processes as well as external factors such as UV radiation and chemicals. Such damage can lead to breaks in the DNA strand. If DNA damage is not properly repaired, mutations can occur, which may result in diseases like cancer. Cells use repair systems to fix this damage, with specialized proteins locating and binding to the damaged regions.

Designed to one day search for evidence of life in the briny ocean beneath the icy shell of Jupiter’s moon Europa, these robots could play a key role in detecting chemical and temperature signals that might indicate alien life, according to scientists at NASA’s Jet Propulsion Laboratory (JPL), who designed and tested the robots.

“People might ask, why is NASA developing an underwater robot for space exploration?” said Ethan Schaler, the project’s principal investigator at JPL. “It’s because there are places we want to go in the solar system to look for life, and we think life needs water.”

Researchers have developed a new quantum theory that for the first time defines the precise shape of a photon, showing its interaction with atoms and its environment.

This breakthrough allows for the visualization of photons and could revolutionize nanophotonic technologies, enhancing secure communication, pathogen detection, and molecular control in chemical reactions.

A groundbreaking quantum theory has allowed researchers to define the exact shape of a single photon for the first time.

1,271 likes, — artificialintelligencenews.in on November 22, 2024: According to former Google CEO Eric Schmidt, the tech industry anticipates that within the next five years, AI systems will be able to write and improve their code. This means AI will soon be capable of analyzing and enhancing its programming, setting off a recursive process that could dramatically accelerate development.

Schmidt suggests that by around 2030–2032, we might see a single AI system that can match 80–90% of the expertise of top specialists across various fields—whether that’s physics, chemistry, art, or more. Such a system would, in effect, be smarter than any human, as no one person can excel in all these disciplines at once. In short, Schmidt believes we are approaching a future where AI could possess intellectual versatility that surpasses any individual human’s abilities.