New research led by a York University professor sheds light on the earliest days of Earth’s formation and potentially calls into question some earlier assumptions in planetary science about the early years of rocky planets. Establishing a direct link between Earth’s interior dynamics occurring within the first 100 million years of its history and its present-day structure, the work is one of the first in the field to combine fluid mechanics with chemistry to better understand Earth’s early evolution.
“This study is the first to demonstrate, using a physical model, that the first-order features of Earth’s lower mantle structure were established four billion years ago, very soon after the planet came into existence,” says lead author Faculty of Science Assistant Professor Charles-Édouard Boukaré in the Department of Physics and Astronomy at York.
In a new paper, researchers at North Carolina State University show proof of concept for a system that—in a single cycle—actively removes microplastics from water.
The findings, described in the journal Advanced Functional Materials, hold the potential for advances in cleansing oceans and other bodies of water of tiny plastics that may harm human health and the environment.
“The idea behind this work is: Can we make the cleaning materials in the form of soft particles that self-disperse in water, capture microplastics as they sink, and then return to the surface with the captured microplastic contaminants?” said Orlin Velev, the S. Frank and Doris Culberson Distinguished Professor of Chemical and Biomolecular Engineering at NC State and corresponding author of the paper.
Researchers at the UAB have developed a new chemical reaction to form solid polymeric networks using light (photocuring) which will allow the preparation of solid materials with controlled shapes measuring under a thousandth of a millimeter. The research is key for the development of new, performance-enhanced lithographic and 3D printing techniques.
At present, 3D printing is an increasingly widespread and accessible technology, typically involving the formation of solid polymeric materials in a specific region, either by extruding pre-formed polymers or by generating them in situ from their corresponding monomers, the molecules that make up polymers.
However, these techniques often suffer from several drawbacks, such as long printing times or low resolution, preventing the production of printed materials with micrometric dimensions.
NASA’s Curiosity rover has unearthed the largest organic molecules ever detected on Mars—possible fragments of fatty acids—hinting at the tantalizing possibility that prebiotic chemistry on the Red Planet may have been more advanced than previously thought. Found in a sample from Gale Crater’s Ye
Every year, millions of tires end up in landfills, creating an environmental crisis with far-reaching consequences. In the United States alone, over 274 million tires were scrapped in 2021, with nearly 20% of them being discarded in landfills. The accumulation of these waste materials presents not only a space issue but also introduces environmental hazards, such as chemical leaching and spontaneous combustion.
While pyrolysis—a process that chemically recycles rubber through high-temperature decomposition—is widely used, it generates harmful byproducts like benzene and dioxins, posing health and environmental risks.
A study titled “Deconstruction of Rubber via C–H Amination and Aza-Cope Rearrangement,” published in Nature, introduces a novel chemical method for breaking down rubber waste. This technique utilizes C–H amination and a polymer rearrangement strategy to transform discarded rubber into valuable precursors for epoxy resins, offering an innovative and sustainable alternative to traditional recycling methods.
The sugar glucose, which is the main source of energy in almost every living cell, has been revealed in a Stanford Medicine study to also be a master regulator of tissue differentiation—the process by which stem cells give rise to specialized cells that make up all the body’s tissues.
It does so not by being catabolized, or broken down, to release the energy sequestered in its chemical bonds, but instead by binding in its intact form to proteins that control which genes in the genome are made into proteins and when.
The discovery of glucose’s undercover double life was so surprising the researchers spent several years confirming their findings before publishing their results.
Artificial Intelligence is evolving rapidly, bringing us closer to the Singularity—a future where AI surpasses human intelligence. This shift could transform every aspect of life, from jobs to technology, creating both exciting possibilities and significant risks. As AI continues to advance at an unprecedented pace, understanding its impact on society is more crucial than ever.
🔍 Key Topics Covered: The rapid evolution of AI and its connection to the looming Singularity, where machines may surpass human intelligence. How AI could reshape industries, jobs, and even human life as we know it. The potential risks of uncontrolled AI growth, including the rise of misinformation, biased outcomes, and the threat of AI-designed chemical weapons. The need for a global governance framework to regulate and monitor AI advancements. The ethical and philosophical questions surrounding AI’s role in society, including its impact on human consciousness and labor.
🎥 What You’ll Learn: The rapid advancement of artificial intelligence and its potential to reach the Singularity sooner than expected. How AI systems like neural networks and symbolic systems impact modern technology and the dangers they pose when left unchecked. The role AI could play in jobs, governance, and the potential for global cooperation to ensure safe AI development. Insight into real-world concerns such as disinformation, biased AI systems, and even the possibility of AI leading to catastrophic societal changes.
📊 Why This Matters: These developments highlight the critical need for responsible AI governance as the technology progresses toward potentially surpassing human intelligence. Understanding the rapid growth of AI and its implications helps us prepare for the future, where machines could fundamentally change society. Whether you’re interested in technology, philosophy, or the future of work, this content offers an in-depth look at the powerful impact AI will have on the world.
*DISCLAIMER*: The content presented is for informational and entertainment purposes, offering insights into the future of AI based on current trends and technological research. The creators are not AI experts or legal professionals, and the information should not be taken as professional advice. Viewer discretion is advised due to the speculative nature of the topics discussed. The views expressed are those of the content creator and do not necessarily represent any affiliated individuals or organizations.
The arrangement of small molecules—known as ligands—around transition metal atoms affects how the metal atoms behave. This is important because transition metals are used as catalysts in the synthesis of a wide range of important materials.
Now, in a study published in the Journal of the American Chemical Society, researchers from the University of Osaka have reported a chemical bond that hadn’t been reported before: complexes of nickel, a metal, with simple ligands containing boron, a non-metal.
Transition metals are known to form complexes with ligands containing atoms from group 13 elements, including aluminum, gallium, and indium. These are known as Z-type ligands, and they can accept electrons from a metal. However, boron, the smallest element in group 13, has only been shown to do this with the support of additional ligands that help approach metals to the boron center.
Did Mars once have life as we know it deep in its ancient past? A recent study published in Proceedings of the National Academy of Sciences might be one st | Space
The heating effect of microwaves has long been used to accelerate reactions. A new experiment shows that microwaves can also excite molecules into a less reactive state.
According to Arrhenius’ law, heating increases the energy of molecules so that more of them can overcome the activation barrier and undergo a chemical reaction. One way to deliver heat is via microwave radiation. Since its early use in chemical synthesis, scientists have noticed that microwave-induced reactions often proceed differently compared with ones enhanced with oil baths and other traditional heating methods. This finding has led to ongoing speculation and debate—and even controversy—about the existence of microwave effects beyond heating [1]. Now Valentina Zhelyazkova of the Swiss Federal Institute of Technology (ETH) Zurich and her collaborators have demonstrated that microwaves can both speed up and slow down chemical reactions [2]. The discovery provides clear evidence of the nonthermal influence of microwaves on chemical processes. It also opens a path toward controlling reactions and understanding them more deeply.
In their investigation Zhelyazkova and her collaborators manipulated the rate of the gas-phase reaction between positively charged helium ions (He+) and carbon monoxide (CO) molecules: He++ CO → He + C++ O. According to so-called capture theory, the reaction’s rate depends on the rotational states of CO, whose quantized energies lie within the microwave band (Fig. 1). The experiment began with the preparation of separate supersonic beams of He atoms and CO molecules via high-pressure expansion into vacuum. The CO molecules were initially in the rotational ground state. By applying a precisely timed microwave pulse before the reaction, the researchers excited a fraction of the population to the first rotationally excited state, which is less reactive than the ground state. The fraction that was excited could be fine-tuned by changing the duration of the microwave pulse.