Toggle light / dark theme

Scientists unveil breakthrough method to eliminate “Forever Chemicals” from water, transforming waste into graphene

• The process uses flash joule heating to mineralize PFAS, converting them into inert fluoride salts and upcycling waste carbon into high-value graphene.

• This innovative approach offers a cost-effective, scalable, and environmentally friendly solution to a pressing global problem.

• Meanwhile, scientists in Tokyo are exploring sustainable carbon-based materials and membrane distillation to remove PFAS, showcasing promising advancements in water purification technology.

Coconut Oil and Soap: New Chemistry Method Could Cut Drug Costs and Support Sustainability

Researchers at the University of Missouri, in collaboration with Novartis Pharmaceuticals, have developed a groundbreaking and environmentally friendly electrochemistry technique. This new method uses engineered “soapy” water, micelles made from natural amino acids and coconut oil, combined with electricity to drive chemical reactions in a safer, more sustainable way.

Unlike traditional electrochemical processes that rely on toxic solvents and electrolytes, this approach offers a non-toxic alternative. Led by Associate Professor Sachin Handa and graduate student Karanjeet Kaur, the team’s innovation could significantly reduce the cost of pharmaceutical manufacturing and advance clean energy technologies. It also shows promise in tackling environmental challenges, such as removing persistent “forever chemicals” like per-and polyfluoroalkyl substances (PFAS) from water.

These ball-shaped structures have two sides: one that mixes with water and the other that repels it. Their unique design allowed researchers to make electrochemical reactions more efficient by combining the traditional roles of solvents, electrolytes, and reaction boosters into one simple tool. Bonus: The reactions are highly efficient and selective.

Anyone can run quantum simulations thanks to new chatbot for chemistry

At times, the reactions do not produce the intended results, and this is where simulations are used to understand what might have caused the anomalous behavior. Chemistry students are often tasked with running these simulations to learn to think critically and make sense of discoveries.

As the complexity of the process increases, more advanced computing infrastructure is required to carry out these simulations. To understand these reactions at a quantum level, theoretical chemists even use specialized software packages to streamline their research and automate the simulation process. AutoSolvateWeb is just a chatbot but can help even non-experts achieve this level of competence.

AutoSolvateWeb helps compute the dissolving of a chemical, referred to as a solute, into a substance called a solvent. The resultant solution is called the solvate, hence the name. While theoretical chemists use computation software to convert this into simulations that look much like 3D movies, AutoSolvateWeb can achieve the same output through a chatbot-like interface with the user.

Illuminating single atoms for sustainable propylene production

More than 150 million metric tons of propylene are produced annually, making it one of the most widespread chemicals used in the chemical industry.

Propylene is the basis for polypropylene, a polymer used in everything from medical devices to packaging to household goods. But most is produced through steam cracking, a high-energy process that uses heat to break down crude oil into smaller hydrocarbons.

Now, Northwestern University chemists have found a way to create propylene using light. Their findings show that a nanoengineered photoactive catalyst can make propylene directly through a process called nonoxidative propane dehydrogenation (PDH).

Magnesium becomes a possible superconductor near the 2D limit

Magnesium is a common chemical element, an alkaline earth metal, which is highly chemically reactive and is very light (even lighter than aluminum). Magnesium is abundant in plants and minerals and plays a role in human physiology and metabolism. In the cosmos, it is produced by large aging stars.

Among its physical properties, while it is a good conductor of electricity, magnesium is not known to be a superconductor. Superconductors are particularly promising materials with the potential to revolutionize , , and quantum computing, and are defined by their ability to conduct electricity without resistance below a certain critical temperature.

Recently, with my colleague Giovanni Ummarino from Turin Polytechnic, I have started challenging the textbook paradigm that states only certain elements in the periodic table can be superconductors. In particular, my colleague and I have shown that the phenomenon of can turn non-superconducting elements into superconductors. Our research is published in Condensed Matter.

Scientists break down plastic using a simple, inexpensive catalyst and air

Harnessing moisture from air, Northwestern University chemists have developed a simple new method for breaking down plastic waste.

The non-toxic, environmentally friendly, solvent-free process first uses an inexpensive catalyst to break apart the bonds in polyethylene terephthalate (PET), the most common plastic in the polyester family. Then, the researchers merely expose the broken pieces to ambient air. Leveraging the trace amounts of moisture in air, the broken-down PET is converted into monomers—the crucial building blocks for plastics. From there, the researchers envision the monomers could be recycled into new PET products or other, more valuable materials.

Safer, cleaner, cheaper and more sustainable than current plastic recycling methods, the new technique offers a promising path toward creating a circular economy for plastics. The study was recently published in Green Chemistry.

Susceptible organic cations promote stability and efficiency in perovskite solar cells

Unlike conventional silicon-based solar cells, perovskite solar cells (PSCs) are not only thin and lightweight, but can also be seamlessly applied to curved surfaces, like building facades and vehicle roofs. What’s more, they can be easily manufactured at room temperature using a solution process, leading to significantly reduced production costs.

However, for PSCs to achieve commercialization, it is crucial to develop technologies that maintain high efficiency over extended periods. A research team affiliated with UNIST has successfully made strides in this area. Their work is published in the journal Joule.

Professor Sang Il Seok of the School of Energy and Chemical Engineering at UNIST, along with researchers Jongbeom Kim and Jaewang Park, has developed an interlayer that leverages the specificity of organic cations on the surface of PSCs, simultaneously achieving and durability.

Real-time analysis reveals a much higher proportion of harmful substances in particulate matter than assumed

People breathing contaminated air over the course of years are at greater risk of developing numerous diseases. This is thought to be due to highly reactive components in particulate matter, which affect biological processes in the body. However, researchers from the University of Basel, Switzerland, have now shown that precisely these components disappear within hours and that previous measurements therefore completely underestimate the quantities in which they are present.

From chronic respiratory problems to cardiovascular diseases, diabetes and dementia, health damage caused by air pollution is wide-ranging and serious. The World Health Organization (WHO) estimates that over six million deaths a year are caused by increased exposure to particulate matter.

The chemical composition of these tiny particles in the air, which come from a wide range of both anthropogenic and natural sources, is highly complex. Which particles trigger which reactions and long-term diseases in the body is the subject of intensive research.