Menu

Blog

Archive for the ‘chemistry’ category: Page 34

Jun 2, 2024

Mussel-Inspired Technique Paves Way for Efficient Nanoparticle Assembly

Posted by in categories: chemistry, nanotechnology, particle physics

Nanoscale materials offer remarkable chemical and physical properties that transform theoretical applications, like single-molecule sensing and minimally invasive photothermal therapy, into practical realities.

The unparalleled features of nanoparticles make them promising for various research and industrial uses. However, effectively using these materials is challenging due to the absence of a rapid and consistent method to transfer a uniform monolayer of nanoparticles, a crucial step in device manufacturing.

One potential solution to this challenge lies in electrostatic assembly processes, where oppositely charged nanoparticles adhere to a surface, forming a monolayer that repels other similarly charged particles from attaching further. While effective, this process is often slow. Nature provides an innovative model to address this limitation through underwater adhesion strategies, which have evolved to circumvent similar problems.

Jun 2, 2024

Phytochemicals and Chronic Diseases Prevention

Posted by in categories: biotech/medical, chemistry

With over 37,000 views, this special issue discusses the relationship between phytochemicals and chronic disease prevention, aiming to promote the development of this field.

The special issue focuses on phytochemicals’ isolation, identification, structure–activity relationships, bioactivities, and…


This Special Issue, entitled Phytochemicals and Prevention of Chronic Diseases, features a series of high-quality research articles that explore the isolation, identification, and bioactivities of phytochemicals, as well as the underlying molecular mechanisms implicated in chronic diseases via antioxidation, neuroprotection, and the modulation of the gut microbiota.

May 30, 2024

New Quantum Dot Technology Improves Solar Cell Efficiency

Posted by in categories: chemistry, engineering, quantum physics, solar power, sustainability

A research team has developed a novel “pulse-shaped” light method to enhance the electrical conductivity of PbS quantum dot solar cells. This new technique, which replaces the lengthy traditional heat treatment process, generates substantial energy at regular intervals, significantly improving efficiency and addressing defects caused by light, heat, and moisture exposure. PbS quantum dots, known for their wide absorption range and low processing costs, are now more viable for commercial use. This advancement is expected to facilitate the broader application of quantum dot technology in optoelectronic devices. Credit: SciTechDaily.com.

A research team headed by Professor Jongmin Choi from the Department of Energy Science and Engineering at Daegu Gyeongbuk Institute of Science and Technology has successfully developed a “PbS quantum dot” capable of quickly improving the electrical conductivity of solar cells. This collaborative effort involved Professor Changyong Lim of the Department of Energy Chemical Engineering at Kyungpook National University, led by President Wonhwa Hong, and Professor Jongchul Lim from the Department of Energy Engineering at Chungnam National University, under the leadership of President Jeongkyoum Kim.

The team identified a method to enhance electrical conductivity through the use of “pulse-shaped” light, which generates substantial energy in a concentrated manner at regular intervals. This method could replace the heat treatment process, which requires a significant amount of time to achieve the same result. This approach is expected to facilitate the production and commercialization of PbS quantum dot solar cells in the future.

May 29, 2024

New molecule found to suppress bacterial antibiotic resistance evolution

Posted by in categories: biotech/medical, chemistry, evolution

Researchers from the University of Oxford have developed a new small molecule that can suppress the evolution of antibiotic resistance in bacteria and make resistant bacteria more susceptible to antibiotics. The paper, “Development of an inhibitor of the mutagenic SOS response that suppresses the evolution of quinolone antibiotic resistance,” has been published in the journal Chemical Science.

May 29, 2024

Iron Fingerprints in Nearby Active Galaxy

Posted by in categories: chemistry, cosmology, space travel

After starting science operations in February, Japan-led XRISM (X-ray Imaging and Spectroscopy Mission) studied the monster black hole at the center of galaxy NGC4151.

“XRISM’s Resolve instrument captured a detailed spectrum of the area around the black hole,” said Brian Williams, NASA’s project scientist for the mission at the agency’s Goddard Space Flight Center in Greenbelt, Maryland. “The peaks and dips are like chemical fingerprints that can tell us what elements are present and reveal clues about the fate of matter as it nears the black hole.”

XRISM (pronounced “crism”) is led by JAXA (Japan Aerospace Exploration Agency) in collaboration with NASA, along with contributions from ESA (European Space Agency). It launched Sept. 6, 2023. NASA and JAXA developed Resolve, the mission’s microcalorimeter spectrometer.

May 29, 2024

Producing gold nano-particles (and hydrogen) in water without the need for toxic chemicals

Posted by in categories: chemistry, nanotechnology, particle physics

In a surprise discovery, Flinders University nanotechnology researchers have produced a range of different types of gold nanoparticles by adjusting water flow in the novel vortex fluidic device—without the need for toxic chemicals. The article, “Nanogold Foundry Involving High-Shear-Mediated Photocontact Electrification in Water,” has been published in Small Science.

May 28, 2024

Scientists uncover a multibillion-year epic written into the chemistry of life

Posted by in category: chemistry

The origin of life on Earth has long been a mystery that has eluded scientists. A key question is how much of the history of life on Earth is lost to time. It is quite common for a single species to “phase out” using a biochemical reaction, and if this happens across enough species, such reactions could effectively be “forgotten” by life on Earth.

May 28, 2024

Decoding Life’s Origins With Lost Biochemical Clues

Posted by in categories: biological, chemistry

A new study demonstrates that just a handful of “forgotten” biochemical reactions are needed to transform simple geochemical compounds into the complex molecules of life.

The origin of life on Earth has long been a mystery that has eluded scientists. A key question is how much of the history of life on Earth is lost to time. It is quite common for a single species to “phase out” using a biochemical reaction, and if this happens across enough species, such reactions could effectively be “forgotten” by life on Earth. But if the history of biochemistry is rife with forgotten reactions, would there be any way to tell?

This question inspired researchers from the Earth-Life Science Institute (ELSI) at the Tokyo Institute of Technology, and the California Institute of Technology (CalTech) in the USA. They reasoned that forgotten chemistry would appear as discontinuities or “breaks” in the path that chemistry takes from simple geochemical molecules to complex biological molecules.

May 27, 2024

A fungus converts cellulose directly into a novel platform chemical

Posted by in category: chemistry

The fungus Talaromyces verruculosus can produce the chemical erythro-isocitric acid directly from cheap plant waste, thus making it interesting for industrial utilization.

May 26, 2024

Hungry, Hungry White Dwarfs: Solving the Puzzle of Stellar Metal Pollution

Posted by in categories: chemistry, food, space

Dead stars known as white dwarfs, have a mass like the sun while being similar in size to Earth. They are common in our galaxy, as 97% of stars are white dwarfs. As stars reach the end of their lives, their cores collapse into the dense ball of a white dwarf, making our galaxy seem like an ethereal graveyard.

Despite their prevalence, the chemical makeup of these stellar remnants has been a conundrum for astronomers for years. The presence of heavy metal elements—like silicon, magnesium, and calcium—on the surface of many of these compact objects is a perplexing discovery that defies our expectations of stellar behavior.

“We know that if these heavy metals are present on the surface of the white dwarf, the white dwarf is dense enough that these heavy metals should very quickly sink toward the core,” explains JILA graduate student Tatsuya Akiba. “So, you shouldn’t see any metals on the surface of a white dwarf unless the white dwarf is actively eating something.”

Page 34 of 343First3132333435363738Last