Toggle light / dark theme

Imagine a world where losing a tooth doesn’t mean living with dentures or undergoing expensive implants. It might sound like science fiction, but researchers in Japan are on the verge of making this dream a reality. A groundbreaking discovery suggests that humans possess a third set of teeth —dormant tooth buds that typically never develop.

This revolutionary finding could transform dental care as we know it. Scientists have identified a way to activate these dormant tooth buds through a newly developed medication. If successful, this treatment could enable people to regrow lost teeth, making dentures and implants a thing of the past.

Let’s dive into the science behind this discovery and explore how it might change the future of dentistry.

To explore how the brain deciphers the melody of speech, researchers worked with the rare group of patients who had electrodes implanted in their brains as part of epilepsy treatment. While these patients actively listened to an audiobook recording of “Alice in Wonderland,” scientists tracked activity in multiple brain regions in real time.

Using the intracerebral recordings from the electrodes deep in the patient’s brain, researchers noted the Heschl’s gyrus section processed subtle changes in voice pitch — not just as sound, but as meaningful linguistic units. The brain encoded pitch accents separately from the sounds that make up words.

The author says the research also revealed that the hidden layer of meaning carried by prosodic contours — the rise and fall of speech — is encoded much earlier in auditory processing than previously thought.

Similar research was conducted in non-human primates, but researchers found those brains lacked this abstraction, despite processing the same acoustic cues.

By unlocking the hidden layer of speech, the team discovered how the brain processes pitch accents, revealing profound implications for various fields.

“Our findings could transform speech rehabilitation, AI-powered voice assistants, and our understanding of what makes human communication unique,” the author said.


Professor Kenji Osafune (Department of Cell Growth and Differentiation) and his team of researchers have devised an effective means to grow iPS cell-derived kidney progenitor cells, paving the way for renal regenerative therapies to become a reality. The findings are published in the journal Science Translational Medicine.

Modern medicine continues to be hampered by the lack of effective treatments for (AKI) and (CKD). Regenerative medicine, such as cell replacement therapies, represents a new hope for patients. Yet, such therapeutic approaches require large-scale production of the necessary cells, which had remained a challenge until this discovery.

Using a mouse model of AKI, the research team first demonstrated the therapeutic potential of human iPS cell-derived nephron progenitor cells (hiPSC-NPCs). When these cells were transplanted into the kidneys of AKI mouse models induced by an anti-cancer drug, cisplatin, the animals’ survival was vastly improved by preventing the deterioration of kidney function.

To understand complex objects, humans are known to mentally transform them and represent them as a combination of simpler elements. This ability, known as compositionality, was so far assumed to require fluency in language, thus emerging in childhood after humans have learned to speak and understand others.

Researchers at Aix-Marseille University-CNRS and PSL University École des Hautes Études en Sciences Sociales-CNRS recently explored the possibility that compositionality is based on simple processes and might therefore already be present in infants. Their paper, published in Communications Psychology, provides evidence that infants as young as 1-year-old already possess basic compositional abilities.

“We are generally interested in understanding what is in place before language takes off in an infant’s mind,” Isabelle Dautriche, first author of the paper, told Medical Xpress. “One of the central properties of language is compositionality, which is a long word that simply means the capacity to put words together to understand sentences.

The gene encoding an enzyme from a firefly, discovered at the Sorocaba campus of the Federal University of São Carlos (UFSCar) in Brazil, has given rise to a biosensor capable of detecting pH changes in mammalian cells—which could be useful, for example, in studying diseases and assessing the toxicity of a drug candidate.

The luciferase from the species Amydetes vivianii changes color from bluish-green to yellow and red as acidity decreases in fibroblasts, the most common cell type in connective tissue. It does so with great intensity and stability, something that had not been achieved with other luciferases tested by the research group.

The work is published in the journal Biosensors.