Toggle light / dark theme

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1

Researchers from CSIR-Central Leather Research Institute (CLRI), supported by INSPIRE Faculty and WISE Kiran Fellowships, explored the chemistry between proteins and nanozymes to advance artificial enzymes. Their work focuses on using manganese-based oxidase nanozyme (MnN) to crosslink collagen, a key structural protein, aiming to develop biomaterials for future medicinal and biomedical applications.

Read Full Story

A tiny, four-fingered “hand” folded from a single piece of DNA can pick up the virus that causes COVID-19 for highly sensitive rapid detection and can even block viral particles from entering cells to infect them, University of Illinois Urbana-Champaign researchers report. Dubbed the NanoGripper, the nanorobotic hand also could be programmed to interact with other viruses or to recognize cell surface markers for targeted drug delivery, such as for cancer treatment.

Led by Xing Wang, a professor of bioengineering and of chemistry at the U. of I., the researchers describe their advance in the journal Science Robotics.

Inspired by the gripping power of the human hand and bird claws, the researchers designed the NanoGripper with four bendable fingers and a palm, all in one nanostructure folded from a single piece of DNA. Each finger has three joints, like a human finger, and the angle and degree of bending are determined by the design on the DNA scaffold.

Researchers at the University of Sydney Nano Institute have made a significant advance in the field of molecular robotics by developing custom-designed and programmable nanostructures using DNA origami.

This innovative approach has potential across a range of applications, from targeted to responsive materials and energy-efficient optical signal processing. The method uses “DNA origami,” so-called as it uses the natural folding power of DNA, the building blocks of human life, to create new and useful biological structures.

As a proof-of-concept, the researchers made more than 50 , including a “nano-dinosaur,” a “dancing robot” and a mini-Australia that is 150 nanometers wide, a thousand times narrower than a human hair.

Every day, researchers at the Department of Energy’s SLAC National Accelerator Laboratory tackle some of the biggest questions in science and technology—from laying the foundations for new drugs to developing new battery materials and solving big data challenges associated with particle physics and cosmology.

To get a hand with that work, they are increasingly turning to artificial intelligence. “AI will help accelerate our science and technology further,” said Ryan Coffee, a SLAC senior scientist. “I am really excited about that.”

The type of semiconductive nanocrystals known as quantum dots is not only expanding the forefront of pure science but also playing a crucial role in practical applications, including lasers, quantum QLED televisions and displays, solar cells, medical devices, and other electronics.

A new technique for growing these microscopic crystals, recently published in Science, has not only found a new, more efficient way to build a useful type of quantum dot, but also opened up a whole group of novel chemical materials for future researchers’ exploration.

“I am excited to see how researchers across the globe can harness this technique to prepare previously unimaginable nanocrystals,” said first author Justin Ondry, a former postdoctoral researcher in UChicago’s Talapin Lab.

In space, astronauts are exposed to extreme stressors our bodies don’t experience on Earth. Microgravity, higher radiation, and a high workload can impact cognitive performance. To find out which cognitive domains are affected by spaceflight, researchers analyzed data from 25 professional astronauts. They found that while on the ISS, astronauts took longer to perform tasks concerned with processing speed, working memory, and attention, but that a six-month stay in space did not result in lasting cognitive impairment once crews returned to Earth.

A stay in space exerts extreme pressures on the human body. Astronauts’ bodies and brains are impacted by radiation, altered gravity, challenging working conditions, and sleep loss – all of which could compromise cognitive functioning. At the same time, they are required to perform complex tasks, and minor mistakes can have devastating consequences.

Little is known, however, about whether astronauts’ cognitive performance changes while in space. Now, working with 25 astronauts who spent an average of six month on the International Space Station (ISS), researchers in the US have examined changes in a wide range of cognitive performance domains. This dataset makes up the largest sample of cognitive performance data from professional astronauts published to date.

A research team from the Shanghai Institute of Nutrition and Health (SINH) of the Chinese Academy of Sciences has revealed that aging specifically impairs the generation of CD8+ tissue resident memory T cells (TRM) and thus compromises the antitumor defensive activity of aged CD8+ T cells. The study is published in Nature Aging.

With the , the risk of developing cancer significantly increases. In recent years, it has been reported that immune aging has an important impact on tumor development. Immune aging is a degenerative change in the immune system that occurs with aging, leading to a decline in and ultimately triggering diseases including tumors.

Within the immune system, CD8+ T cells are the main defensive adaptive immune cells protecting against . However, the mechanism by which aging impairs the antitumor response of CD8+ T cells was not previously understood.