Toggle light / dark theme

Galvanizing blood vessel cells to expand for organ transplantation

Scientists have discovered a method to induce human endothelial cells from a small biopsy sample to multiply in the laboratory, producing more than enough cells to replace damaged blood vessels or nourish organs for transplantation, according to a preclinical study by Weill Cornell Medicine investigators.

Endothelial cells form the inner lining of blood vessels and regulate blood flow, inflammation and healing. Traditional approaches for growing these cells in the lab have yielded only limited numbers before they lose their ability to function. The new method involves treating adult endothelial cells with a small molecule that triggers the hibernating cells to wake up and divide hundreds of times without signs of aging, mutation or loss of function.

The findings, published Oct. 14 in Nature Cardiovascular Research, may provide a reliable way to generate an enormous number of a patient’s own endothelial cells, enabling vascular grafts for , diabetes treatments and and strategies to target abnormal tumor blood vessels.

Mathematical model could help boost drug efficacy by getting dosing in rhythm with circadian clocks

Researchers at the University of Michigan have developed a mathematical model that reveals how our circadian rhythms can have dramatic impacts on how our bodies interact with medicines.

This could help doctors prescribe medicines to have the best intended effect by syncing the dosing up with the natural clocks of their patients.

“These findings provide a mechanistic basis for chronotherapeutics—optimizing drug efficacy by considering circadian timing,” said the new study’s author Tianyong Yao, an undergraduate researcher in the U-M Department of Mathematics. “This could improve treatment for conditions such as ADHD, depression and fatigue.”

Researchers pioneer ‘green’ framework for sustainable drug development

Medical drugs are expensive to make and can have an adverse effect on the environment. Researchers Stefano Cucurachi and Justin Lian have developed a framework to help the health care system assess the economic and environmental sustainability of medical compounds. The research is published in the Proceedings of the National Academy of Sciences.

With a growing and aging population, and more people living with chronic disease, health care costs are rising and the is expanding fast. Patients and health care professionals are also beginning to wonder about the of medicines. But information on this is lacking.

“Some sources claim 10% of all pharmaceuticals have an environmental risk, but only the smallest fraction has ever been assessed,” says Cucurachi, Associate Professor of industrial ecology.

“I Became a GMO to Fight Aging” | Liz Parrish at Transvision Madrid 2025

Liz Parrish, founder and CEO of BioViva, delivers a compelling keynote on the revolutionary potential of gene therapy for human longevity and rejuvenation.

As one of the boldest voices in the longevity field and the first person to undergo experimental gene therapy for aging, Parrish shares her insights into how genetic interventions are ready to extend human healthspan.

Parrish challenges the status quo of medical research and advocates for faster translations of scientific advances, arguing that delayed access is costing millions of lives.

Leveraging AI in the Early Detection of Pancreatic Cancer | Tomorrow’s Cure Season 2 Episode 7

A recent breakthrough from Mayo Clinic researchers offers new hope. Using the world’s largest imaging dataset, Mayo Clinic’s team has developed a cutting-edge AI model capable of detecting pancreatic cancer on standard CT scans—when surgery is still an option. This breakthrough represents a leap forward in the fight against pancreatic cancer, with the potential to save lives. Learn more about this life-changing innovation in early cancer detection. Featured experts include Ajit Goenka, M.D., radiologist and professor of radiology at Mayo Clinic’s Comprehensive Cancer Center and Suresh Chari, M.D., professor, Department of Gastroenterology, Hepatology, and Nutrition in the Division of Internal Medicine at MD Anderson Cancer Center. Subscribe to Tomorrow’s Cure wherever you get your podcasts. Visit tomorrowscure.com for more information.

This podcast is for informational purposes only and should not be relied upon as professional, medical or legal advice. Always consult with a qualified health care provider for any medical advice. The appearance of any guest does not imply an endorsement of them, their employer, or any entity they represent. The views and opinions are those of the speakers and do not necessarily reflect the views of Mayo Clinic. Reference to any product, service or entity does not constitute an endorsement or recommendation by Mayo Clinic.

From Mayo Clinic to your inbox, sign-up for free: https://mayocl.in/3e71zfi.

Visit Mayo Clinic: https://www.mayoclinic.org/appointmen… Mayo Clinic on Facebook: / mayoclinic Follow Mayo Clinic on Instagram: / mayoclinic Follow Mayo Clinic on X, formerly Twitter: https://twitter.com/MayoClinic Follow Mayo Clinic on Threads: https://www.threads.net/@mayoclinic.

Like Mayo Clinic on Facebook: / mayoclinic.
Follow Mayo Clinic on Instagram: / mayoclinic.
Follow Mayo Clinic on X, formerly Twitter: https://twitter.com/MayoClinic.
Follow Mayo Clinic on Threads: https://www.threads.net/@mayoclinic

USTC Realizes Human Near-Infrared Color Vision via Contact Lens Technology-University of Science and Technology of China

A research team led by Prof. XUE Tian and Prof. MA Yuqian from the University of Science and Technology of China (USTC), in collaboration with multiple research groups, has successfully enabled human near-infrared (NIR) spatiotemporal color vision through upconversion contact lenses (UCLs). The study was published online in Cell on May 22, 2025 (EST), and was featured in a News release by Cell Press.

Researchers Reveal Autoimmune Response in Patients with ALS

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease, is a neurodegenerative disease that affects the neurons in the brain and spinal cord. In the United States alone there are fewer than 20,000 cases a year. However, the disease is fatal with a 5-year survival rate of 10–20% after diagnosis. This progressive disorder impedes voluntary muscle movement and can dramatically impact an individual’s quality of life. Symptoms of ALS include gradual muscle weakness and fatigue which spreads throughout the body. Difficulty moving and slurred speech is accompanied by muscle spasms, cramps, and twitching. Diagnosis is based on an exam led by a healthcare physician who also considers medical history and analyzes neuroimaging. Unfortunately, there are no blood tests to detect ALS. Additionally, the exact cause of ALS is unknown. However, many physicians and scientists believe that it is a combination of genetic and environmental factors.

Currently, there is no cure for ALS and medication works to manage symptoms and improve quality of life. Treatments include medication that slows disease progression, physical and speech therapy, and devices that help make movement and breathing easier (including wheelchairs and ventilators). It is unknown how this disease progresses and scientists are working to develop optimal therapies for patients.

A recent article in Nature, by Dr. Alessandro Sette and others, revealed that ALS is an autoimmune disorder. This discovery is extremely novel and progresses the field of ALS, especially since very little was known before. Sette is a Professor in the Centers for Autoimmunity and Inflammation, and Cancer Immunotherapy, and is Co-Director of the Center for Vaccine Innovation at La Jolla Institute for Immunology. Sette’s work focuses on understanding the immune system and measuring its activity in various diseases. More specifically, he focuses on cellular biomarkers that elicit robust immune reactions.

Mom’s voice boosts language-center development in preemies’ brains, study finds

Hearing the sound of their mother’s voice promotes development of language pathways in a premature baby’s brain, according to a new Stanford Medicine-led study.

During the study, which is published in Frontiers in Human Neuroscience, hospitalized preemies regularly heard recordings of their mothers reading to them. At the end of the study, MRI brain scans showed that a key language pathway was more mature than that of preemies in a who did not hear the recordings. It is the first randomized controlled trial of such an intervention in .

“This is the first causal evidence that a speech experience is contributing to at this very young age,” said the lead author, Katherine Travis, Ph.D., who was an assistant professor at Stanford Medicine when the study was conducted and is now an assistant professor at Weill Cornell Medical School and Burke Neurological Institute.

Nanomaterial-based wireless sensor can monitor pressure injuries and hygiene risks in real time

A research team has co-developed a nanomaterial-based ‘wireless multi-sensing platform’ for the early detection of pressure injuries, which have a high prevalence among individuals with limited mobility, including the elderly and people with disabilities. The team’s findings are published in Advanced Functional Materials.

Pressure injuries are among the most painful conditions affecting elderly and disabled individuals in long-term care and rehabilitation facilities. They result from sustained pressure that damages , making regular repositioning and meticulous hygiene care essential.

For patients with , in particular, contact with bio-contaminants such as urine and feces can further irritate the damaged skin and worsen the injuries. However, in hospital settings, a shortage of caregivers or staff makes real-time monitoring of patients’ conditions extremely challenging.

/* */