Toggle light / dark theme

Scientists can now target the cells at the center of ALS

ALS is a cruel disease. It robs the body of its ability to control itself—the ability to move, the ability to communicate. While there are currently no effective treatments to reverse its debilitating symptoms, Allen Institute researchers have opened a window of hope.

For the first time ever, scientists have developed a precise genetic toolkit that can target the exact nerve cells destroyed by the disease and potentially deliver therapies where they are needed most—a discovery that could dramatically speed up the quest for a cure. The findings were recently published in the journal Cell Reports.

Amyotrophic lateral sclerosis (ALS) is a progressive and devastating disease that gradually kills off motor neurons in the brain and spinal cord that control voluntary muscle movement. As these neurons die, people with ALS lose the ability to move, speak, and eventually breathe. Despite decades of research, there’s still no effective treatment or cure. Unlike many other brain cells, motor neurons in the spinal cord have been extremely hard to reach with genetic tools. This has slowed down research and made it hard to test new treatments in the cells that matter most.

Doctors Find They Can Detect Cancer in Blood Years Before Diagnosis

Researchers at Johns Hopkins University have discovered that cancer can be detected in the bloodstream a full three years before it’s spotted by doctors for an official diagnosis.

As detailed in a partially government-funded study published in the journal Cancer Discovery last month, the team found that genetic material being shed by cancer tumors can show up in the bloodstream far earlier than previously thought, paving the way for promising new cancer screening methods that could potentially head off the disease long before it gets more serious.

In some cases, the advanced detection could make the difference between being able to beat the cancer or not, according to the researchers.

New Enzyme Target Strategy Offers Hope for Neuroblastoma Therapy

Neuroblastoma, a pediatric cancer of the nervous system, remains the leading cause of cancer-related death in young children, particularly when the disease has spread. Despite aggressive treatment regimens that include surgery, radiation, chemotherapy, and immunotherapy, metastatic neuroblastoma often proves incurable, largely because the cancer can evade or resist standard therapies.

One approach, known as differentiation therapy, attempts to coax immature neuroblastoma cells into developing into mature, noncancerous nerve cells. But current differentiation treatments, such as retinoic acid (RA), are only partially effective: many patients fail to respond, and nearly half of those who do eventually relapse due to resistance.

Now, researchers at Karolinska Institutet and Lund University in Sweden have identified an alternative approach—targeting the antioxidant enzymes PRDX6 and GSTP1—that may sidestep the limitations of RA. The study, “Combined targeting of PRDX6 and GSTP1 as a potential differentiation strategy for neuroblastoma treatment,” published in Proceedings of the National Academy of Sciences, shows that dual inhibition of these enzymes not only kills some neuroblastoma cells but also transforms others into healthy, active neurons.

Profiles in Versatility

During her uncle’s treatment in 2003, Green experienced what she refers to as a “divine download”—an electrifying idea inspired by her college internships at NASA’s Marshall Space Flight Center and the Institute of Optics. “If a satellite in outer space can tell if a dime on the ground is face up or face down, and if a cell phone can target just one cell phone on the other side of the planet,” she recalls thinking, “surely we should be able to harness the technology of lasers to treat cancer just at the site of the tumor, so we won’t have all of these side effects.”

In the nearly two decades that followed, Dr. Green rerouted her career, earned a physics PhD from the University of Alabama at Birmingham—the second Black woman to do so—and dove into cancer treatment research, with physics as her guide. In 2009, she developed a treatment that uses nanoparticles and lasers in tandem: Specially designed nanoparticles are injected into a solid tumor, and, when the tumor is hit with near infrared light, the nanoparticles heat up, killing the cancer cells. In a preliminary animal study published in 2014, Green tested the treatment on mice, whose tumors were eliminated with no observable side effects.


When Hadiyah-Nicole Green crossed the stage at her college graduation, she felt sure about what would come next. She’d start a career in optics—a good option for someone with a bachelor’s degree in physics—and that would be that.

Life, though, had other plans. The day after she graduated from Alabama A&M University, she learned that her aunt, Ora Lee Smith, had cancer. Smith and her husband had raised Green since she was four years old, after the death of Green’s mother and then grandparents.

Her aunt “said she’d rather die than experience the side effects of chemo or radiation,” says Green, now a medical physicist and founder and CEO of the Ora Lee Smith Cancer Research Foundation.

How to Build in Space — for Life on Earth

🏗️ Q: What are the potential benefits of off-worlding heavy industry to space?

A: Space-based manufacturing can produce sustainable energy, food, and water for a trillion-dollar space economy, allowing Earth to recover as a garden planet for future generations.

Space-Based Manufacturing.

🧬 Q: How can microgravity in low-Earth orbit advance biotech manufacturing?

A: Enable unique manufacturing of protein crystals, tissues, and novel drugs impossible on Earth, with high-throughput production of exceptional quality organoids for Alzheimer’s and cancer drug testing.

☀️ Q: How can space-based solar power solve Earth’s energy challenges?

Deadly fungus in US threatens lives as infection rates rise in These seven states

One study showed that only 59% of organ transplant patients lived for one year after getting invasive aspergillosis. Only 25% of stem cell transplant patients survived that long.

From 2000 to 2013, US hospital stays for invasive aspergillosis went up about 3% each year. By 2014, there were almost 15,000 hospital stays, costing around $1.2 billion. Autopsies in ICUs show aspergillosis is one of the top four infections that can cause death.

Scientists Warn: Long Work Hours May Physically Alter Your Brain

Working long hours may actually change the structure of your brain, according to new research published in Occupational & Environmental Medicine. The study points to alterations in key brain areas responsible for emotional regulation and executive functions like working memory and problem solving.

Researchers believe that chronic overwork could trigger neuroadaptive changes, which might have lasting effects on both cognitive performance and emotional well-being.

The dangers of working too much extend beyond burnout. Long hours have already been linked to higher risks of heart disease, metabolic disorders, and mental health problems. The International Labour Organisation (ILO) reports that overwork contributes to more than 800,000 deaths worldwide each year.

Time matters: the dynamics of plasma membrane repair

The plasma membrane (PM) of eukaryotic cells is constantly exposed to many challenges that can cause wounds that necessitate rapid and efficient repair mechanisms to ensure cell survival. PM wound repair not only encompasses the immediate resealing of the membrane barrier, which involves exocytosis of internal vesicles to deliver membrane, but also subsequent processes that are essential to restore cellular homeostasis. These include restoration of membrane and cortical cytoskeleton structures, as well as replenishment of intracellular organelles consumed during resealing. Recent evidence suggests that the different steps in PM repair, resealing, restructuring, and restoration, are spatiotemporally correlated and regulated by membrane tension. Recent advances in understanding the different phases of PM repair are reviewed and a time-dependent classification of repair mechanisms is proposed.

In stereo: Neurons shift gears between thoughts using brain rhythms

The brain is constantly mapping the external world like a GPS, even when we don’t know about it. This activity comes in the form of tiny electrical signals sent between neurons—specialized cells that communicate with one another to help us think, move, remember and feel. These signals often follow rhythmic patterns known as brain waves, such as slower theta waves and faster gamma waves, which help organize how the brain processes information.

Understanding how respond to these rhythms is key to unlocking how the brain functions related to navigation in real time—and how it may be affected in disease.

A new study by Florida Atlantic University and collaborators from Erasmus Medical Center, Rotterdam, Netherlands, and the University of Amsterdam, Netherlands, has uncovered a surprising ability of brain cells in the hippocampus to process and encode and respond to information from multiple brain rhythms at once.

/* */