Menu

Blog

Archive for the ‘biotech/medical’ category: Page 51

May 15, 2024

Multi-scale, nanomaterial-based ice inhibition platform enables full-cycle cryogenic protection for mouse oocytes

Posted by in categories: biotech/medical, chemistry, nanotechnology

Safe and high-quality fertility preservation is of growing significance for women in clinical trials. Current primary methods for cryopreserving human oocytes are slow freezing and vitrification, but existing techniques pose risks of biochemical toxicity and are restricted in large-scale clinical practice.

May 15, 2024

SamuelSchmidgall/AgentClinic: Agent benchmark for medical diagnosis

Posted by in categories: biotech/medical, robotics/AI

From Stanford, Albert Einstein, & Johns Hopkins U: a multimodal agent benchmark to evaluate AI in simulated clinical environments.

From stanford, albert einstein, & johns hopkins U

AgentClinic: a multimodal agent benchmark to evaluate AI in simulated clinical environments abs: https://arxiv.org/abs/2405.07960 project page: https://agentclinic.github.io code: https://github.com/samuelschmidgall/agentclinic.

Continue reading “SamuelSchmidgall/AgentClinic: Agent benchmark for medical diagnosis” »

May 15, 2024

Cannabis compound’s neuroprotective properties revealed — could be key to treating Alzheimer’s and Parkinson’s

Posted by in categories: biotech/medical, neuroscience

Currently, treatments are largely limited to symptomatic relief rather than addressing the underlying disease progression. Given this gap in treatment options, there is a significant need for new therapies that can protect brain cells and potentially reverse damage.

Cannabinol (CBN), a compound derived from the cannabis plant, has emerged as a candidate for such treatments due to its neuroprotective properties, which are evident without the psychoactive effects associated with other cannabinoids like THC.

Previous studies indicated that CBN could help preserve mitochondrial function in brain cells, an essential factor for cell survival and energy production. Mitochondrial dysfunction is a common feature in several neurodegenerative diseases, often leading to cell death. By focusing on CBN and its derivatives, researchers aimed to develop new pharmacological strategies to prevent or mitigate the cellular mechanisms that lead to neurodegeneration.

May 15, 2024

Telomeres exposed: A new target for cancer diagnosis and treatment

Posted by in categories: biotech/medical, life extension

Some cancers exploit the protective role of telomeres. New work measuring telomeres offers accurate cancer diagnosis and shows promise for personalised cancer treatment.

May 15, 2024

DNA flips the way a cell works

Posted by in category: biotech/medical

In his new book, Dr Alan Herbert gives an honest account of his journey in the discovery of left-handed DNA.

May 15, 2024

New research presents ‘mini-brains’ that could advance Alzheimer’s treatment

Posted by in categories: biotech/medical, neuroscience

Using an innovative new method, a University of Saskatchewan (USask) researcher is building tiny pseudo-organs from stem cells to help diagnose and treat Alzheimer’s.

May 14, 2024

Unlocking consciousness: A new frontier in neuroscientific fusion

Posted by in categories: biotech/medical, neuroscience

In a recent paper published in the International Journal of Psychiatry Research, Dr. Gerard Marx from MX Biotech and Prof. Chaim Gilon from the Hebrew University of Jerusalem present an innovative integration of two notable neuroscience theories—the Global Neuronal Network (GNW) hypothesis and the Tripartite Mechanism of Memory.

May 14, 2024

New AI Technology estimates Brain Age using Low-Cost EEG Device

Posted by in categories: biotech/medical, life extension, robotics/AI

As people age, their brains do, too. But if a brain ages prematurely, there is potential for age-related diseases such as mild cognitive impairment, dementia, or Parkinson’s disease. If “brain age” could be easily calculated, then premature brain aging could be addressed before serious health problems occur.

Researchers from Drexel University’s Creativity Research Lab have developed an artificial intelligence technique that can effectively estimate an individual’s brain age based on electroencephalogram (EEG) brain scans. The technology could help to make early, regular screening for degenerative brain diseases more accessible. The work is published in the journal Frontiers in Neuroergonomics.

Led by John Kounios, Ph.D., professor in Drexel’s College of Arts and Sciences and Creativity Research Lab director, the research team used a type of artificial intelligence called machine learning to estimate an individual’s brain age similar to the way one might guess another person’s age based on their physical appearance.

May 14, 2024

Bionanomachine Breakthrough: A Master Key for Sustainable Chemistry

Posted by in categories: biotech/medical, chemistry, nanotechnology

Scientists at the Paul Scherrer Institute (PSI) have for the first time precisely characterized the enzyme styrene oxide isomerase, which can be used to produce valuable chemicals and drug precursors in an environmentally friendly manner. The study appears today in the journal Nature Chemistry.

Enzymes are powerful biomolecules that can be used to produce many substances at ambient conditions. They enable “green” chemistry, which reduces environmental pollution resulting from processes used in synthetic chemistry. One such tool from nature has now been characterized in detail by PSI researchers: the enzyme styrene oxide isomerase. It is the biological version of the Meinwald reaction, an important chemical reaction in organic chemistry.

“The enzyme, discovered decades ago, is made by bacteria,” says Richard Kammerer of PSI’s Biomolecular Research Laboratory. His colleague Xiaodan Li adds: “But because the way it functions was not known, its practical application has been limited up to now.” The two researchers and their team have elucidated the structure of the enzyme as well as the way it works.

May 14, 2024

Harvard and Google Neuroscience Breakthrough: Intricately Detailed 1,400 Terabyte 3D Brain Map

Posted by in categories: biotech/medical, computing, neuroscience

A collaborative effort between Harvard and Google has led to a breakthrough in brain science, producing an extensive 3D map of a tiny segment of human brain, revealing complex neural interactions and laying the groundwork for mapping an entire mouse brain.

A cubic millimeter of brain tissue may not sound like much. But considering that tiny square contains 57,000 cells, 230 millimeters of blood vessels, and 150 million synapses, all amounting to 1,400 terabytes of data, Harvard and Google researchers have just accomplished something enormous.

A Harvard team led by Jeff Lichtman, the Jeremy R. Knowles Professor of Molecular and Cellular Biology and newly appointed dean of science, has co-created with Google researchers the largest synaptic-resolution, 3D reconstruction of a piece of human brain to date, showing in vivid detail each cell and its web of neural connections in a piece of human temporal cortex about half the size of a rice grain.

Page 51 of 2,636First4849505152535455Last