Toggle light / dark theme

Brain–computer interface control with artificial intelligence copilots

Motor brain–computer interfaces (BCIs) decode neural signals to help people with paralysis move and communicate. Even with important advances in the past two decades, BCIs face a key obstacle to clinical viability: BCI performance should strongly outweigh costs and risks. To significantly increase the BCI performance, we use shared autonomy, where artificial intelligence (AI) copilots collaborate with BCI users to achieve task goals. We demonstrate this AI-BCI in a non-invasive BCI system decoding electroencephalography signals. We first contribute a hybrid adaptive decoding approach using a convolutional neural network and ReFIT-like Kalman filter, enabling healthy users and a participant with paralysis to control computer cursors and robotic arms via decoded electroencephalography signals. We then design two AI copilots to aid BCI users in a cursor control task and a robotic arm pick-and-place task. We demonstrate AI-BCIs that enable a participant with paralysis to achieve 3.9-times-higher performance in target hit rate during cursor control and control a robotic arm to sequentially move random blocks to random locations, a task they could not do without an AI copilot. As AI copilots improve, BCIs designed with shared autonomy may achieve higher performance.

Published September 2025 Nature Machine Intelligence:

Preprint: 2024 Oct 12:2024.10.09. https://pmc.ncbi.nlm.nih.gov/articles/PMC11482823/

The sleep switch that builds muscle, burns fat, and boosts brainpower

UC Berkeley researchers mapped the brain circuits that control growth hormone during sleep, uncovering a feedback system where sleep fuels hormone release, and the hormone regulates wakefulness. The discovery helps explain links between poor sleep, obesity, diabetes, and cognitive decline, while opening new paths for treating sleep and metabolic disorders.

Space travel may accelerate the aging of stem cells as much as tenfold, study says

In fact, they age “ten times faster in space than on the ground,” said Dr. Catriona Jamieson, the director of the Sanford Stem Cell Institute at the University of California, San Diego, a lead author of the study.

Stem cells are special cells that can develop into various kinds of tissue. Stem cell aging is potentially worrisome because it diminishes the body’s natural ability to repair its tissues and organs, potentially leading to chronic, age-related conditions like cancer, neurodegenerative diseases and heart problems.

Satiation variability prediction using AI for obesity treatment

Meal size and termination is regulated by a process called satiation, which varies widely among adults with obesity.

The researchers assessed calories to satiation (CTS) and integrated a machine learning genetic risk score (CTSGRS) to predict obesity treatment outcomes.

High CTS or CTSGRS identified individuals who responded better to phentermine-topiramate, whereas low CTS or CTSGRS predicted greater weight loss with liraglutide, highlighting personalized obesity therapy.

Squishy ‘smart cartilage’ could target arthritis pain as soon as flareups begin

Researchers have developed a material that can sense tiny changes within the body, such as during an arthritis flareup, and release drugs exactly where and when they are needed.

The squishy material can be loaded with that are released in response to small changes in pH in the body. During an flareup, a joint becomes inflamed and slightly more acidic than the surrounding tissue.

The material, developed by researchers at the University of Cambridge, has been designed to respond to this natural change in pH. As acidity increases, the material becomes softer and more jelly-like, triggering the release of drug molecules that can be encapsulated within its structure. Since the material is designed to respond only within a narrow pH range, the team says that drugs could be released precisely where and when they are needed, potentially reducing side effects.

Scientists harness the power of collapsing bubbles to propel tiny robots

A team of scientists from China and the U.S. is pioneering the development of bubble-powered robots, which could one day replace needles for painless drug delivery into the body. Inspired by nature, the researchers developed a new technique that harnesses the energy released by a collapsing bubble in a liquid, a process known as cavitation.

The natural world has evolved ingenious ways to exploit cavitation for movement. For example, ferns use it within specialized cells in their sporangia to catapult spores, and mantis shrimps snap their appendages with such force that the resulting bubbles collapse with enough energy to stun their prey.

In their study, published in the journal Science, the team details how they used cavitation as a propulsion system for . They built millimeter-sized robots, called “jumpers,” out of , polypyrrole and titanium carbide that heated up quickly when hit by a laser.

A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells

Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and University Medical Centre Rostock, h

/* */