Toggle light / dark theme

Schizophrenia is linked to iron and myelin deficits in the brain, neuroimaging study finds

Schizophrenia is a severe and debilitating psychiatric disorder characterized by hallucinations, disorganized speech and thought patterns, false beliefs about the world or oneself, difficulties concentrating and other symptoms impacting people’s daily functioning. While schizophrenia has been the topic of numerous research studies, its biological and neural underpinnings have not yet been fully elucidated.

While some past brain imaging studies suggest that is associated with abnormal levels of and in the brain, the results collected so far are conflicting. Iron is a metal known to contribute to healthy brain function, while myelin is a fatty substance that forms a sheath around nerve fibers, protecting them and supporting their conduction of electrical signals.

Researchers at King’s College London, Hammersmith Hospital and Imperial College London recently set out to further explore the possibility that schizophrenia is linked to abnormal levels of iron and myelin in the brain. Their findings, published in Molecular Psychiatry, uncovered potential new biomarkers of schizophrenia that could improve the understanding of its underlying brain mechanisms.

Genetically encoded biosensor tracks plants’ immune hormone in real time

From willow bark remedies to aspirin tablets, salicylic acid has long been part of human health. It also lies at the heart of how plants fight disease. Now, researchers at the University of Cambridge have developed a pioneering biosensor that allows scientists to watch, for the first time, how plants deploy this critical immune hormone in their battle against pathogens.

Published in Science, Dr. Alexander Jones’s group at the Sainsbury Laboratory, Cambridge University (SLCU) presents SalicS1, a genetically encoded biosensor that can detect and track the dynamics of the plant immune hormone (SA) with exquisite precision inside living plants.

Salicylic acid is a central regulator of plant immunity, triggering defense responses against a huge diversity of invaders. Until now, however, scientists have lacked the tools to measure SA at high enough spatial and to understand how plants balance growth with immune defense.

Experimental drug findings pave way for clinical trial to target cancer’s elusive growth switch

Researchers at the Francis Crick Institute and Vividion Therapeutics have identified chemical compounds that can precisely block the interaction between the major cancer-driving gene RAS and a key pathway for tumor growth.

Now entering the first clinical trial in humans, if found to be safe and effective, these drugs could be used to treat many different types of cancers while avoiding effects on .

A gene called RAS, which kickstarts cell growth pathways, is mutated in around one in five cancers. Mutated versions of the gene lock the RAS protein in an activated state, telling the cancer cell to keep growing bigger and keep dividing.

Acidic tumor environment promotes survival and growth of pancreatic cancer cells, study shows

Tumors are not a comfortable place to live: oxygen deficiency, nutrient scarcity, and the accumulation of sometimes harmful metabolic products constantly stress cancer cells.

A research team from the German Cancer Research Center (DKFZ) and the Institute of Molecular Pathology (IMP) in Vienna has now discovered that the acidic pH value in tumor tissue—known as acidosis—is a decisive factor in how pancreatic adapt their in order to survive under these adverse conditions.

The results are published in the journal Science.

Research highlights solutions to critical gaps in dementia and childhood cancer care

In the United States, significant numbers of adults with dementia require long-term care services. For example, around 750,000 people who live in nursing homes have a diagnosis of dementia. However, transportation insecurity for this population has not received sufficient attention. Although long-term care facilities provide basic medical services, residents with dementia often need external, preventative, and follow-up care such as specialist visits, diagnostics, and dental or vision services. Without reliable nonemergency medical transportation, these needs may go unmet.

To demonstrate the extent of this problem, Postdoctoral Research Scientist Soojeong Han, Ph.D., and her colleagues reviewed existing literature on non-emergency medical for individuals with living in long-term care (LTC) facilities. The study, “Transportation Services in Society for Individuals Living With Dementia in Long-Term Care Facilities: A Scoping Review,” was published in the Journal of the American Medical Directors Association.

Their review found only five publications that mentioned this topic, and even then, only briefly. Across these studies, caregivers, health care professionals, and people with dementia consistently described nonemergency medical transportation as a critical need. Reported barriers included financial strain, rural-urban disparities, lack of continuity among transportation vendors, and dementia-specific challenges such as , stigma, and the need for caregiver accompaniment.

Our Future in Imaging Comes Into Focus

Pushing the bounds of imaging isn’t new for the San Francisco Biohub and Imaging Institute. Both organizations have already taken down barriers to research by building imaging tools that don’t exist anywhere else, as well as creating pioneering cell atlases that have redefined how we understand health and disease.

One example is the San Francisco Biohub’s research on how zebrafish embryos develop over time. In order to capture video images of whole zebrafish embryos through various developmental stages, Biohub scientists built a custom microscope, along with novel software that can find and track the movement of each cell in the videos. The “Google Earth” of embryology resulting from this research is Zebrahub, which brings a new vision to developmental biology and helps us understand our own cellular origins.

Projects like Zebrahub require scientists from a host of different disciplines. Teams across the Biohub, along with interdisciplinary partners, worked to build the microscope, develop the cell tracking software and interpret the resulting images. The collaborative nature of this project isn’t unique to our research on zebrafish — it’s part of our philosophy, and we believe collaboration is critical to drive scientific advancement in all of our work.

Scientists just found a molecule that could stop Parkinson’s in its tracks

Researchers have designed a peptide that prevents the deadly misfolding of alpha-synuclein, the protein behind Parkinson’s and some dementias. In lab and animal tests, it stabilized the protein and improved motor function. The work demonstrates the power of rational drug design in tackling brain diseases that have long lacked effective treatments.

1 Gene, 1 Disease no More — Acknowledging The Full Complexity of Genetics Could Improve And Personalize Medicine

Your DNA contains millions of genetic variants that interact with each other in ways that affect whether diseases such as schizophrenia and heart disease develop, and with what severity.

/* */