Menu

Blog

Archive for the ‘biotech/medical’ category: Page 1953

Sep 5, 2019

LEAF | Life Extension Advocacy Foundation

Posted by in categories: biotech/medical, life extension

Our mission is to promote the advancement of biomedical technologies which will increase healthy human lifespan.

Sep 5, 2019

World’s first anti-aging trial gets green-light

Posted by in categories: biotech/medical, life extension

A 5 year study. In recent years it has been shown to extend the lives of nematodes (or roundworms) by 57% and mice by 6%. In humans, claims abound that metformin-takers are living longer, having fewer cardiovascular episodes and seeing reduced odds of getting cancer.


Groundbreaking TAME trial, which directly targets aging as an endpoint, finally begins this November, reveals lead clinician Dr Nir Barzilai.

Sep 5, 2019

Stretching proteins with magnetic tweezers

Posted by in category: biotech/medical

Physicists at LMU have developed a highly sensitive method for measuring the mechanical stability of protein conformations, and used it to monitor the early steps in the formation of blood clots.

As the central mediators of cell function in biological organisms, proteins are involved in the execution of virtually all cellular processes. They provide the internal scaffolding that gives cells their form, and enable cells to dynamically alter their morphology. They transport substrates back and forth across membranes, and they catalyze most of the that take place in cells. In the course of these tasks many proteins are subjected to external forces. Indeed, some “mechanosensitive” proteins effectively measure the strength of the forces acting upon them and are activated when the imposed exceeds a given threshold value. Von Willebrand Factor (VWF), which initiates the formation of blood clots, is an important representative of this class.

The mechanical forces required to activate proteins like VWF are often so small that their magnitude could not be determined using existing methods. Now, a team of scientists led by LMU physicists Dr. Martin Benoit and Professor Jan Lipfert has developed a much more sensitive procedure. Their “magnetic tweezers” can quantify forces that are 100 times smaller than the commonly used alternative method currently available. As Lipfert and colleagues report in the journal PNAS, they have employed the technique to observe the unfolding of the VWF protein under the influence of low mechanical forces.

Sep 5, 2019

Johannon BenZion — Ira Pastor — Futurist New Deal Podcast — “Harnessing Nature’s Clues for Regeneration, Disease Reversion, and Rejuvenation”

Posted by in categories: aging, bioengineering, biotech/medical, business, cryonics, futurism, genetics, geopolitics, government, health

Sep 5, 2019

Geneticists Are Untangling the Mystery of Left-Handedness

Posted by in categories: biotech/medical, genetics, neuroscience

A series of genetic variants can influence handedness, according to a new paper.

No, researchers have not discovered a “handedness gene.” But through brain imaging of 9,000 people in the United Kingdom, researchers devised a list of genetic variations that contribute to the way different brain processes end up on either side of the brain. This, in turn influences handedness—and can also influence whether someone will develop certain neurological diseases, according to the paper published in the journal Brain.

Sep 4, 2019

A biocompatible magnetic skin that could enable new wearable systems

Posted by in categories: biotech/medical, cyborgs, wearables

Researchers at King Abdullah University of Science and Technology have recently developed a flexible and imperceptible magnetic skin that adds permanent magnetic properties to all surfaces to which it is applied. This artificial skin, presented in a paper published in Wiley’s Advanced Materials Technologies journal, could have numerous interesting applications. For instance, it could enable the development of more effective tools to aid people with disabilities, help biomedical professionals to monitor their patients’ vital signs, and pave the way for new consumer tech.

“Artificial skins are all about extending our senses or abilities,” Adbullah Almansouri, one of the researchers who carried out the study, told TechXplore. “A great challenge in their development, however, is that they should be imperceptible and comfortable to wear. This is very difficult to achieve reliably and durably, if we need stretchable electronics, batteries, substrates, antennas, sensors, wires, etc. We decided to remove all these delicate components from the skin itself and place them in a comfortable nearby location (i.e., inside of eye glasses or hidden in a fabric).”

The , developed under the supervision of Prof. Jürgen Kosel, is magnetic, thin and highly flexible. When it is worn by a human user, it can be easily tracked by a nearby magnetic sensor. For instance, if a user wears it on his eyelid, it allows for his to be tracked; if worn on fingers, it can help to monitor a person’s physiological responses or even to control switches without touching them.

Sep 4, 2019

Transient Telomerase Expression Mediates Senescence and Reduces Cancer Risk

Posted by in categories: biotech/medical, life extension

A joint study by researchers at the National Institutes of Health (NIH) and the University of Maryland (UMD) has revealed a previously undocumented protective function of the telomerase enzyme.

Telomerase is used by somatic cells too

It was thought for a long time that telomerase is only active in certain cell types, such as stem cells, immune cells, and embryonic cells, in order to protect them from aging. Aside from a few cell types and, of course, cancer cells, which are able to hijack the telomerase enzyme in order to replicate uncontrollably, researchers believed that the enzyme is switched off in other types of cells.

Sep 3, 2019

Undercover evolution: Our individuality is encrypted in our DNA, but it is deeper than expected

Posted by in categories: biotech/medical, encryption, evolution, genetics

Providing a glimpse the hidden workings of evolution, a group of researchers at UC Santa Barbara have discovered that embryos that appear the same can start out with surprisingly different instructions.

“We found that a lot of undercover evolution occurs in ,” said Joel Rothman, a professor in the Department of Molecular, Cellular, and Developmental Biology, who led the team.

Indeed, although members of the same species are identical across the vast majority of their genomes, including all the genetic instructions used in development, Rothman and his colleagues found that key parts of the assembly instructions used when embryos first start developing can differ dramatically between individuals of the same species.

Sep 3, 2019

Cryonics Institute August 2019, 1,991 Members in total (including 177 patients in stasis) & 195 Assoc

Posted by in categories: biotech/medical, cryonics, life extension

Members. www.cryonics.org

Sep 3, 2019

Japanese Woman Received the World’s First iPS Corneal Transplant

Posted by in category: biotech/medical

https://youtube.com/watch?v=zNKYudKmXsQ

Suffering from a corneal disease where her left eye was turning blind, the woman can now see well, say the Osaka University team who carried out the surgery.