Toggle light / dark theme

A novel 3D printing method called high-throughput combinatorial printing (HTCP) has been created that significantly accelerates the discovery and production of new materials.

The process involves mixing multiple aerosolized nanomaterial inks during printing, which allows for fine control over the printed materials’ architecture and local compositions. This method produces materials with gradient compositions and properties and can be applied to a wide range of substances including metals, semiconductors.

Semiconductors are a type of material that has electrical conductivity between that of a conductor (such as copper) and an insulator (such as rubber). Semiconductors are used in a wide range of electronic devices, including transistors, diodes, solar cells, and integrated circuits. The electrical conductivity of a semiconductor can be controlled by adding impurities to the material through a process called doping. Silicon is the most widely used material for semiconductor devices, but other materials such as gallium arsenide and indium phosphide are also used in certain applications.

Scientists have developed an advanced technique for 3D printing that is set to revolutionize the manufacturing industry.

The group, led by Dr. Jose Marques-Hueso from the Institute of Sensors, Signals & Systems at Heriot-Watt University in Edinburgh, has created a new method of 3D printing that uses near-infrared (NIR) light to create complex structures containing multiple materials and colors.

They achieved this by modifying a well-established 3D known as stereolithography to push the boundaries of multi-material integration. A conventional 3D printer would normally apply a blue or UV laser to a that is then selectively solidified, layer by layer, to build a desired object. But a major drawback of this approach has been the limitations in intermixing materials.

In 2018, just as 3D printing was starting to take off as a construction method, Dubai set an ambitious goal: the city wanted to become the 3D printing capital of the world, aiming for a quarter of its new buildings to be printed rather than conventionally constructed.

Follow-through was swift, with the Dubai municipality building becoming the world’s largest 3D-printed structure in 2019. The city is continuing to make good on its goal—and breaking its own record—with an even bigger building, and the first of its kind: the world’s first 3D-printed mosque will be built there this year. At 2,000 square meters (21,528 square feet), it will accommodate 600 people and have more than twice the square footage of the municipal building.

The mosque is a collaboration between the Islamic Affairs and Charitable Activities Department (IACAD) and architectural firm JT+Partners. There will also be a construction company involved, but a name hasn’t yet been released (the municipality building was constructed by Boston-based Apis Cor; the city could be looking to work with them again, or could take a different direction entirely).

From 2021

A new method called tensor holography could enable the creation of holograms for virtual reality, 3D printing, medical imaging, and more — and it can run on a smartphone.

YouTube.


PhD student from MIT’s Department of Electrical Engineering and Computer Science Liang Shi said people once believed that with the existing consumer-grade computer hardware, it’s impossible to do real-time 3D holograms. It’s going to take decades before it would be viable, but he figured out a way to cut that time.

Holographic image is not just made up in the movies, it’s being created as we speak. Shi’s team took a different approach from what was first developed in holograms, where laser beam would split, half the beam is used to illuminate the subject and the other half used as a reference for the light waves phase.

The world’s first flexible, transparent augmented reality (AR) display screen using 3D printing and low-cost materials has been created by researchers at the University of Melbourne, KDH Design Corporation and the Melbourne Centre for Nanofabrication (MCN). The development of the new display screen is set to advance how AR is used across a wide range of industries and applications.

AR overlays digital content onto the , enhancing the user’s real-time perception and interaction with their environment. Until now, creating flexible AR technology that can adjust to different angles of light sources has been a challenge, as current mainstream AR manufacturing uses glass substrates, which must undergo photomasking, lamination, cutting, or etching microstructure patterns. These time-consuming processes are expensive, have a poor yield rate and are difficult to seamlessly integrate with product appearance designs.

Led by University of Melbourne researchers Associate Professor Ranjith Unnithan, Professor Christina Lim and Professor Thas Nirmalathas, in collaboration with Taiwanese KDH Design Corporation, the team has successfully developed a transparent AR display screen using low-cost, optical-quality polymer and plastic—a first-of-its-kind achievement in the field of AR displays.

In the three-dimensional printing process of ceramic with low-angle structures, additional supporting structures are usually employed to avoid collapse of overhanging parts. However, the extra supporting structures not only affect printing efficiency, but the problems caused by their removal are also a matter of concern. Herein, we present a ceramic printing method, which can realize printing of unsupported multi-scale and large-span ceramics through the combination of direct ink writing and near-infrared induced up-conversion particles-assisted photopolymerization. This printing technology enables in-situ curing of multi-scale filaments with diameters ranging from 410 µm to 3.50 mm, and ceramic structures of torsion spring, three-dimensional bending and cantilever beam were successfully constructed through unsupported printing. This method will bring more innovation to the unsupported 3D manufacturing of complex shape ceramics.


In 3D ceramic printing, the need for additional supports can increase processing time and introduce defects during post-processing removal. Here, authors merge direct ink writing and up-conversion particles-assisted photopolymerization under near-infrared irradiation for support-free printing with controlled curing rates reducing material waste, printing time, and post-processing steps.

A lightweight, customized mouse delivering maximum comfort and peak performance that fits snugly into your palm and your palm alone.

In this day and age, where we spend hours hunched over a computer, there is a case for everything being ergonomic.

Into this niche steps Formify, a team based out of Toronto with the belief that individualized design should be accessible to everyone.