Toggle light / dark theme

Nature has an extraordinary knack for producing composite materials that are simultaneously light and strong, porous and rigid — like mollusk shells or bone. But producing such materials in a lab or factory — particularly using environmentally friendly materials and processes — is extremely challenging.

Researchers in the Soft Materials Laboratory in the School of Engineering turned to nature for a solution. They have pioneered a 3D printable ink that contains Sporosarcina pasteurii: a bacterium which, when exposed to a urea-containing solution, triggers a mineralization process that produces calcium carbonate (CaCO3). The upshot is that the researchers can use their ink — dubbed BactoInk — to 3D-print virtually any shape, which will then gradually mineralize over the course of a few days.

-This would be good for coral reefs.


EPFL researchers have published a method for 3D-printing an ink that contains calcium carbonate-producing bacteria. The 3D-printed mineralized bio-composite is unprecedently strong, light, and environmentally friendly, with a range of applications from art to biomedicine.

Calcium carbonate is an impressive material, in that it combines strength, light weight and porosity. Scientists have devised a new bacteria-based method of 3D-printing the substance, for use in applications such as bone repair and coral reef restoration.

First of all, this isn’t the first time we’ve heard about the 3D-printing of calcium carbonate objects.

Earlier approaches have involved extruding a gel containing mineral particles, which subsequently dries and hardens. Some of the resulting items have been rather soft and fragile, however, or they’ve shrunk as they dried, creating cracks and causing their shape to change.

A precise replica of the patient’s heart is created as a soft, flexible shell.

MIT engineers’ newly developed robotic heart will help doctors adjust therapies to individuals’ unique heart structures and functions. The personalized 3D-printed heart can control and imitate the patient’s capacity to pump blood.


Melanie Gonick/MIT

As explained by MIT, the procedure begins with the researchers converting medical images of a patient’s heart into a three-dimensional computer model, which they then 3D print with a polymer-based ink.

Researchers from the Korea Electrotechnology Research Institute (KERI) and the Ulsan National Institute of Science and Technology (UNIST) have created “core technology” for 3D printed smart contact lenses building on low-power monochrome displays and demonstrated its functionalities for augmented reality tools such as live navigation. The team’s research has been published in Advanced Science.

“Our achievement is a development of 3D printing technology that can print functional micro-patterns on a non-(planar) substrate that can commercialize advanced smart contact lenses to implement AR (Augmented Reality),” said Seol Seung-Kwon, Ph.D., of the team’s work. “It will greatly contribute to the miniaturization and versatility of AR devices.”

Dr. Seol Seung-Kwon’s Smart 3D Printing Research Team at KERI and Professor Lim-Doo Jeong’s team at Ulsan National Institute of Science and Technology (UNIST) developed core technology for smart contact lenses that can implement augmented reality (AR)-based navigation, with a 3D printing process.

A smart contact lens is a product attached to the human eye like a normal lens that provides various information. Research on these lenses is currently focused mainly on diagnosing and treating health problems. Recently, Google and others are developing smart contact lenses for displays that can implement AR. Yet many obstacles to commercialization exist due to several technical challenges.

In implementing AR with smart contact lenses, electrochromic displays that can be driven with low power are necessary, and a “pure Prussian blue” color, with cost competitiveness and quick contrast and transition between colors, is attracting attention as the lens’ material. In the past, the color was coated on the in the form of a film using the electric plating method, which limited the production of advanced displays that can express various information (letters, numbers, images).

Researchers have come up with a new way to use 3D printing to make a new superalloy.

A group of researchers has developed a new superalloy resistant to high temperatures. This could if ever brought into production, prove revolutionary for the future of turbines.

This would increase its efficiency and decrease waste heat.


Craig Fritz/Sandia Labs.

At present, steam turbine blades, bearings, and seals are made of metal that tends to soften and elongate well before its melting point, which is one issue restricting the output of today’s power plants. If these issues are resolved, it is possible to increase the temperature of anything that uses a steam turbine to convert heat into electricity.

Scientists from the Micro, Nano and Molecular Systems Lab at the Max Planck Institute for Medical Research and the Institute for Molecular Systems Engineering and Advanced Materials at Heidelberg University have created a new technology to assemble matter in 3D. Their concept uses multiple acoustic holograms to generate pressure fields with which solid particles, gel beads and even biological cells can be printed.

These results pave the way for novel 3D cell culture techniques with applications in biomedical engineering. The results of the study were published in the journal Science Advances.

Additive manufacturing or 3D printing enables the fabrication of complex parts from functional or . Conventional 3D printing can be a slow process, where objects are constructed one line or one layer at a time. Researchers in Heidelberg and Tübingen now demonstrate how to form a 3D object from smaller building blocks in just a single step.

Top 10 upcoming future technologies | trending technologies | 10 upcoming tech.

Future technologies are currently developing at an acclerated rate. Future technology ideas are being converted into real life at a very fast pace.

These Innovative techs will address global challenges and at the same time will make life simple on this planet. Let’s get started and have a look at the top technologies of the future | Emerging technologies.

#futuretechnologies #futuretech #futuristictechnologys #emergingtechnologies #technology #tech #besttechnology #besttech #newtechnology #cybersecurity #blockchain #emergingtech #futuretechnologyideas #besttechnologies #innovativetechs.

Chapters.
00:00 ✅ Intro.
00:23 ✅ 10. Genomics: Device to improve your health.
01:13 ✅ 09. New Energy Solutions for the benefit of our environment.
01:53 ✅ 08. Robotic Process Automation: Technology that automates jobs.
02:43 ✅ 07. Edge Computing to tackle limitations of cloud computing.
03:39 ✅ 06. Quantum Computing: Helping to stop the spread of diseases.
04:31 ✅ 05. Augmented reality and virtual reality: Now been employed for training.
05:05 ✅ 04. Blockchain: Delivers valuable security.
05:50 ✅ 03. Internet of things: So many things can connect to the internet and to one another.
06:40 ✅ 02. Cyber Security to improve security.
07:24 ✅ 01. 3D Printing: Used to create prototypesfuturistic technologybest future tech.

Here at Tech Buzzer, we ensure that you are continuously in touch with the latest update and aware of the foundation of the tech industry. Thank you for being with us. Please subscribe to our channel and enjoy the ride.