Menu

Blog

Latest posts

Nov 26, 2024

Cyanobacterial circadian clock uses an AM radio-like mechanism to control cellular processes

Posted by in categories: biological, media & arts, physics

Cyanobacteria, an ancient lineage of bacteria that perform photosynthesis, have been found to regulate their genes using the same physics principle used in AM radio transmission.

New research published in Current Biology has found that cyanobacteria use variations in the amplitude (strength) of a pulse to convey information in single cells. The finding sheds light on how biological rhythms work together to regulate cellular processes.

In AM (amplitude modulation) radio, a wave with constant strength and frequency—called a carrier wave—is generated from the oscillation of an electric current. The audio signal, which contains the information (such as music or speech) to transmit, is superimposed onto the carrier wave. This is done by varying the amplitude of the carrier wave in accordance with the frequency of the .

Nov 26, 2024

More comprehensive search for sterile neutrinos comes up empty

Posted by in categories: cosmology, particle physics

Particle physicists have been looking for so-called “sterile neutrinos” for a few decades now. They are a hypothesized particle that would have a tiny mass like the three known neutrinos but would not interact by the weak force or any other Standard Model force, only through gravitational interactions.

Its existence—or their existence—would solve some anomalies seen in , help answer questions beyond the Standard Model of particle physics, and, if massive enough, could explain cold dark matter or warm dark matter.

But have not been seen in any particle experiments, despite many attempts. Now an experiment by the IceCube Collaboration has used 10.7 years of data from their detector near the Amundsen-Scott South Pole Station to lower the probability that at least one sterile neutrino does not exist. Their paper appears in Physical Review Letters.

Nov 26, 2024

Spin-powered crystals dramatically improve water splitting process for clean hydrogen production

Posted by in categories: chemistry, energy, sustainability

Water splitting—breaking water molecules into hydrogen and oxygen—is a promising pathway to sustainable energy. However, this process has long been challenged by the slow chemical kinetics of the oxygen evolution reaction that make hydrogen production inefficient and costly.

An international research team has now uncovered a solution. By using special crystals with unique intrinsic “chiral” structures—meaning they have a distinctive left or right-handed atomic arrangement—researchers have dramatically improved the water splitting process.

The findings are published in the journal Nature Energy.

Nov 26, 2024

X-ray diffraction enables measurement of in-situ ablation depth in aluminum

Posted by in categories: computing, information science, physics

When laser energy is deposited in a target material, numerous complex processes take place at length and time scales that are too small to visually observe. To study and ultimately fine-tune such processes, researchers look to computer modeling. However, these simulations rely on accurate equation of state (EOS) models to describe the thermodynamic properties—such as pressure, density and temperature—of a target material under the extreme conditions generated by the intense heat of a laser pulse.

One process that is insufficiently addressed in current EOS models is ablation, where the irradiation from the laser beam removes solid material from the target either by means of vaporization or plasma formation (the fourth state of matter). It is this mechanism that launches a shock into the material, ultimately resulting in the high densities required for high pressure experiments such as (ICF).

To better understand laser–matter interactions with regard to ablation, researchers from Lawrence Livermore National Laboratory (LLNL), the University of California, San Diego (UCSD), SLAC National Accelerator Laboratory and other collaborating institutions conducted a study that represents the first example of using X-ray diffraction to make direct time-resolved measurements of an aluminum sample’s ablation depth. The research appears in Applied Physics Letters.

Nov 26, 2024

Planetary scientist proposes an alternative theory for what lies beneath the surfaces of Uranus and Neptune

Posted by in category: space

Diamond rain? Super-ionic water? These are just two proposals that planetary scientists have come up with for what lies beneath the thick, bluish, hydrogen-and-helium atmospheres of Uranus and Neptune, our solar system’s unique, but superficially bland, ice giants.

A planetary scientist at the University of California, Berkeley, now proposes an alternative theory—that the interiors of both these are layered, and that the two layers, like oil and water, don’t mix. That configuration neatly explains the planets’ unusual magnetic fields and implies that earlier theories of the interiors are unlikely to be true.

In a paper appearing in the journal Proceedings of the National Academy of Sciences, Burkhard Militzer argues that a deep ocean of water lies just below the and, below that, a highly compressed fluid of carbon, nitrogen and hydrogen.

Nov 26, 2024

Researchers uncover potential new biomarker for psychosis diagnosis

Posted by in categories: biotech/medical, neuroscience

The current standard of care for psychosis is a diagnostic interview, but what if it could be diagnosed before the first symptom emerged? Researchers at the Del Monte Institute for Neuroscience at the University of Rochester are pointing toward a potential biomarker in the brain that could lead to more timely interventions and personalized care.

“Establishing such biomarkers could provide a key step in changing how we care for, treat, and offer interventions to people with ,” said Brian Keane, Ph.D., assistant professor of Psychiatry, Center for Visual Science, and Neuroscience at the University of Rochester Medical Center.

Keane recently co-authored an article in Molecular Psychiatry that identifies how MRI scans could reveal in people with psychosis.

Nov 26, 2024

How tiny droplets can deform ice: Findings show potential for cryopreservation and food engineering

Posted by in categories: cryonics, engineering, food, life extension, particle physics

When water freezes slowly, the location where water turns into ice—known as the freezing front—forms a straight line. Researchers from the University of Twente showed how droplets that interact with such a freezing front cause surprising deformations of this front. These new insights were published in Physical Review Letters and show potential for applications in cryopreservation and food engineering techniques.

When water freezes, it is often thought of as a predictable, solid block forming layer by layer. But what happens if the progressing freezing front encounters or ? Researchers from the University of Twente have explored this question, discovering that droplets can cause surprising deformations in the way ice forms.

Nov 26, 2024

Learning high-accuracy error decoding for quantum processors

Posted by in categories: quantum physics, robotics/AI

A recurrent, transformer-based neural network, called AlphaQubit, learns high-accuracy error decoding to suppress the errors that occur in quantum systems, opening the prospect of using neural-network decoders for real quantum hardware.

Nov 26, 2024

Terawatt-attosecond hard X-ray free-electron laser at high repetition rate

Posted by in category: transportation

Using the European XFEL free-electron laser, researchers demonstrate terawatt-scale, attosecond hard X-ray pulses. Ten pulse trains per second, each containing hundreds of pulses at megahertz repetition rates, are achieved. Such short and intense pulses at high repetition rate enable unprecedented damage-free X-ray measurements with attosecond temporal resolution.

Nov 26, 2024

The Coldest Place in the Universe Is Unlocking Antimatter Mysteries

Posted by in category: materials

In a chilling Italian lab, scientists utilize extreme cold and ancient materials to challenge existing physics laws.

Their research, aiming to detect phenomena like neutrinoless double beta decay, could redefine understanding of matter and antimatter in the universe, involving students in groundbreaking experiments.

Exploring the universe’s mysteries: the italian lab.

Page 1 of 12,05812345678Last