Menu

Blog

Page 4

Aug 12, 2024

Chip that entangles four photons opens up possibility of inviolable quantum encryption

Posted by in categories: computing, encryption, information science, mathematics, quantum physics, security

Unlike classical encryption, which relies on mathematical algorithms, quantum encryption assures security based on physical principles. Detection of espionage or interference is guaranteed by unavoidable alteration of the quantum states involved.

Aug 12, 2024

New genetically engineered wood can store carbon and reduce emissions

Posted by in categories: chemistry, energy, engineering, genetics, sustainability

Researchers at the University of Maryland genetically modified poplar trees to produce high-performance, structural wood without the use of chemicals or energy-intensive processing. Made from traditional wood, engineered wood is often seen as a renewable replacement for traditional building materials like steel, cement, glass and plastic. It also has the potential to store carbon for a longer time than traditional wood because it can resist deterioration, making it useful in efforts to reduce carbon emissions.

But the hurdle to true sustainability in engineered wood is that it requires processing with volatile chemicals and a significant amount of energy, and produces considerable waste. The researchers edited one gene in live poplar trees, which then grew wood ready for engineering without processing.

The research was published online on August 12, 2024, in the Journal Matter.

Aug 12, 2024

Australian solar team beats perovskite efficiency milestone, joins elite global club

Posted by in categories: solar power, sustainability

Australian scientists have joined an elite club of just eight around the world, making a perovskite solar cell that can hit 30 per cent efficiency.

Led by storied University of Sydney professor Anita Ho-Baillie, the Sydney team’s work was weighed and measured by the US National Renewable Energy Laboratory (NREL).

“It shows that we are capable of producing high performance cells. The next step we will achieve is higher performance, either by double junction or triple junction,” Ho-Baillie says.

Aug 12, 2024

Using corrugated wall coverings to passively cool buildings

Posted by in categories: physics, space

A team of applied physicists at Columbia University, working with a colleague from Henry M. Gunn High School, and another from the University of California, Los Angeles, has found that using corrugated siding on outdoor building walls can passively reduce wall temperatures.

In their paper published in the journal Nexus, the group describes how they added corrugated siding to a small test and found that doing so lowered the wall temperatures.

Prior research has shown that covering the tops of buildings with radiative cooling materials can reduce the amount of heat that makes its way inside by up to 20%. This is because they are made in such a way as to reflect sunlight and radiate heat into .

Aug 12, 2024

LLMs and the Curious Notion of Panprotopsychism

Posted by in category: neuroscience

Could the astonishing language abilities of LLMs hint at a deeper, more fundamental consciousness woven into the fabric of reality itself?

Aug 12, 2024

Spacetime defects uncouple gravity from mass in dark matter alternative

Posted by in categories: cosmology, physics

Something seems to be missing from the universe, and the favored model of physics calls it “dark matter” – but despite a century of searching, it remains a no-show. A new paper proposes an alternative hypothesis, showing how gravity could exist without mass and produce many of the same effects we ascribe to dark matter.

Einstein’s theory of general relativity is still our best model for describing gravity. As you might remember from high school physics class, gravity is the force that arises from masses resting on the fabric of spacetime. The more mass an object has, the deeper the “dip” in spacetime and the stronger the gravitational pull.

But starting in the 1930s, some strange astronomical observations began to raise questions. Galaxy clusters seemed to be moving much too fast to stay stable based on visible matter, suggesting that far more matter was present than we could see. That led to the hypothesis that huge amounts of invisible stuff – which was dubbed dark matter – pervaded the universe. The idea has held surprisingly strong in observations in the decades since, backed up by the motions of stars within galaxies and the bending and magnifying of light through gravitational lenses.

Aug 12, 2024

Coupled neural activity controls working memory in humans

Posted by in category: neuroscience

Temporarily holding on to information depends on coordinated brain waves.

Aug 12, 2024

Quantum computers are advancing much faster than scientists expected

Posted by in categories: computing, quantum physics

Quantum computing is one of those “just around the corner” technologies that have the scientific community split. Tech outfits such as Google and IBM have gone full throttle with both research and development and marketing as if they’re already here, while many independent researchers have claimed quantum computers will never work.

Most people working in the field, however, believe that quantum computers will be able to solve problems that classical computers can’t solve within the next 10 years.

This is according to a recent survey of 927 people with associations to the field of quantum computing (researchers, executives, press, enthusiasts, etc.) conducted by QuEra. Of those surveyed, 74.9% “expect quantum to be a superior alternative to classical computing for certain workloads” within the next 10 years.

Aug 12, 2024

The Power and Potential of Gene Tuning

Posted by in category: health

Fyodor Urnov explains how retuning genes can restore health harmony.

Aug 12, 2024

Bose–Einstein condensation of light in a semiconductor quantum well microcavity

Posted by in category: quantum physics

Photon Bose–Einstein condensation is observed in a semiconductor laser, where thermalization and condensation of photons occur using an InGaAs quantum well and an open microcavity. The distinction between regimes of photon Bose–Einstein condensation and conventional lasing are clearly identified.

Page 4 of 11,57712345678Last