Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

New generator uses carbon fiber to turn raindrops into rooftop electricity

A research team affiliated with UNIST has introduced a technology that generates electricity from raindrops striking rooftops, offering a self-powered approach to automated drainage control and flood warning during heavy rainfall.

Led by Professor Young-Bin Park of the Department of Mechanical Engineering at UNIST, the team developed a droplet-based electricity generator (DEG) using carbon fiber-reinforced polymer (CFRP). This device, called the superhydrophobic fiber-reinforced polymer (S-FRP-DEG), converts the impact of falling rain into electrical signals capable of operating stormwater management systems without an external power source. The findings are published in Advanced Functional Materials.

CFRP composites are lightweight, yet durable, and are used in a variety of applications, such as aerospace and construction because of their strength and resistance to corrosion. Such characteristics make it well suited for long-term outdoor installation on rooftops and other exposed urban structures.

Disappointment alters brain chemistry and behavior

From work meetings to first dates, it’s essential to adjust our behavior for success. In certain situations, it can even be a matter of life or death. So how do we switch our behavior when situations change? Published in Nature Communications, neuroscientists describe the neural basis of behavioral flexibility in mice, with insights which may help us understand a wide variety of diseases and disorders, from addiction to obsessive compulsive disorder (OCD) to Parkinson’s disease.

“The brain mechanisms behind changing behaviors have remained elusive, because adapting to a given scenario is very neurologically complex. It requires interconnected activity across multiple areas of the brain,” explains a co-author. “Previous work has indicated that cholinergic interneurons—brain cells that release a neurotransmitter called acetylcholine—are involved in enabling behavioral flexibility. Here, we were able to use advanced imaging techniques to see neurotransmitter release in real time and delve into the fundamental mechanisms behind behavioral flexibility”

In their investigations, the researchers trained mice in a virtual maze, teaching them the correct route to receive a reward. They then switched the route, leading to an unexpected loss of reward for the mice, and observed the effects of this disappointing change using two-photon microscopy.

Reinforcement learning accelerates model-free training of optical AI systems

Optical computing has emerged as a powerful approach for high-speed and energy-efficient information processing. Diffractive optical networks, in particular, enable large-scale parallel computation through the use of passive structured phase masks and the propagation of light. However, one major challenge remains: systems trained in model-based simulations often fail to perform optimally in real experimental settings, where misalignments, noise, and model inaccuracies are difficult to capture.

In a new paper published in Light: Science & Applications, researchers at the University of California, Los Angeles (UCLA) introduce a model-free in situ training framework for diffractive optical processors, driven by proximal policy optimization (PPO), a reinforcement learning algorithm known for stability and sample efficiency. Rather than rely on a digital twin or the knowledge of an approximate physical model, the system learns directly from real optical measurements, optimizing its diffractive features on the hardware itself.

“Instead of trying to simulate complex optical behavior perfectly, we allow the device to learn from experience or experiments,” said Aydogan Ozcan, Chancellor’s Professor of Electrical and Computer Engineering at UCLA and the corresponding author of the study. “PPO makes this in situ process fast, stable, and scalable to realistic experimental conditions.”

Optical system uses diffractive processors to achieve large-scale nonlinear computation

Researchers at the University of California, Los Angeles (UCLA) have developed an optical computing framework that performs large-scale nonlinear computations using linear materials.

Reported in eLight, the study demonstrates that diffractive optical processors—thin, passive material structures composed of phase-only layers—can compute numerous nonlinear functions simultaneously, executed rapidly at extreme parallelism and spatial density, bound by the diffraction limit of light.

Nonlinear operations underpin nearly all modern information-processing tasks, from and pattern recognition to general-purpose computing. Yet, implementing such operations optically has remained a challenge, as most are weak, power-hungry, or slow.

Molecular difference in autistic brains may explain signaling imbalance

Yale School of Medicine (YSM) scientists have discovered a molecular difference in the brains of autistic people compared to their neurotypical counterparts.

Autism is a neurodevelopmental condition associated with behavioral differences including difficulties with social interaction, restrictive or intense interests, and repetitive movements or speech. But it’s not clear what makes autistic brains different.

Now, a study in the American Journal of Psychiatry has found that the brains of autistic people have fewer of a specific kind of receptor for glutamate, the most common excitatory neurotransmitter in the brain. The reduced availability of these receptors may be associated with various characteristics linked to autism.

AI-powered knowledge graph links heart images to genes and drug predictions

Knowledge graphs are a powerful tool for bringing together information from biological databases and linking what is already known about genes, diseases, treatments, molecular pathways and symptoms in a structured network. Until now, they have lacked detailed, individual-level information about how the affected organ actually looks and functions.

The latest research, led by postdoctoral researcher Dr. Khaled Rjoob and group leader Professor Declan O’Regan from the Computational Cardiac Imaging Group at the MRC Laboratory of Medical Sciences, has advanced this technology by adding imaging data to a knowledge graph for the first time. CardioKG provides a detailed view of the heart’s structure and function which dramatically improves the accuracy of predicting which genes are linked to disease and whether existing drugs could treat them.

The work is published in the journal Nature Cardiovascular Research.

Stiffer colon could signal risk of early-onset colorectal cancer

Increased stiffness of the colon, spurred by chronic inflammation, may encourage the development and progression of early-onset colorectal cancer (CRC), a study co-led by UT Southwestern Medical Center researchers suggests. The findings, published in Advanced Science, could lead to new ways to prevent and treat this deadly subset of CRC.

“We consider this study a significant advancement toward identifying those at risk of early-onset CRC and finding new ways to treat them,” said Emina Huang, M.D., M.B.A., Professor of Surgery in the Division of Colon and Rectal Surgery and Executive Vice Chair of Research for Surgery at UT Southwestern. She is also Professor of Biomedical Engineering and in the Harold C. Simmons Comprehensive Cancer Center.

UT Southwestern partnered with researchers from The University of Texas at Dallas on the study.

Physicists & Philosophers debunk The Fine Tuning Argument

The Fine-Tuning Argument is often seen as the best argument for the existence of God. Here we have assembled some of the world’s top physicists and philosophers to offer a reply. Not every critic of the argument comes from the same perspective. Some doubt there is a problem to be solved whilst others agree it is a genuine problem but think there are better solutions than the God hypothesis. Some like the multiverse and anthropics other don’t. We have tried to represent these different approaches and so it should be taken as given, that not all of the talking heads agree with each other. Nevertheless, they all share the view that the fine-tuning argument for God does not work. Nor are all the objectors atheist, Hans Halvorson offers what we think is a strong theological objection to the argument. This film does not try to argue that God doesn’t exist only that the fine-tuning argument is not a good reason to believe in God. Most of the footage was filmed exclusively for this film with some clips being re-used from our Before the Big Bang series, which can be viewed here: • Before the Big Bang 5: The No Boundary Pro… All of the critics of the fine tuning argument that appear were sent a draft of the film more than a month before release and asked for any objections either to their appearance, the narration or any other aspect of the film. No objections were raised, and many replies were extremely positive and encouraging. A timeline of the subjects covered is below:
(We define God as a perfect Omni immaterial mind as for example modern Christians and Muslims advocate, there are other conceptions of God which our video does not address).
Just to be clear, this is a polemical film arguing against the fine tuning argument.

Timecodes.

0:00 Introduction.
4:11 The universe as a roll of the dice.
6:15 what is probability?
7:28 probability problems.
9:25 measure problem.
15:45 deceptive probabilities.
20:23 the flatness problem.
22:14 counterfactuals versus probabilities.
23:59 fine tuning versus God.
37:02 necessity.
38:53 multiverse and anthropics.
47:34 Boltzmann brains.
49:45 Entropy.
52:45 Cosmological Natural Selection.
59:10 conclusion.

/* */