Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

NASA’s Juno measures thickness of Europa’s ice shell

Data from NASA’s Juno mission has provided new insights into the thickness and subsurface structure of the icy shell encasing Jupiter’s moon Europa. Using the spacecraft’s Microwave Radiometer (MWR), mission scientists determined that the shell averages about 18 miles (29 kilometers) thick in the region observed during Juno’s 2022 flyby of Europa. The Juno measurement is the first to discriminate between thin and thick shell models that have suggested the ice shell is anywhere from less than half a mile to tens of miles thick.

Slightly smaller than Earth’s moon, Europa is one of the solar system’s highest-priority science targets for investigating habitability. Evidence suggests that the ingredients for life may exist in the saltwater ocean that lies beneath its ice shell. Uncovering a variety of characteristics of the ice shell, including its thickness, provides crucial pieces of the puzzle for understanding the moon’s internal workings and the potential for the existence of a habitable environment.

The new estimate on the ice thickness in the near-surface icy crust was published on Dec. 17 in the journal Nature Astronomy.

3D material mimics graphene’s electron flow for green computing

University of Liverpool researchers have discovered a way to host some of the most significant properties of graphene in a three-dimensional (3D) material, potentially removing the hurdles for these properties to be used at scale in green computing. The work is published in the journal Matter.

Graphene is famous for being incredibly strong, lightweight, and an excellent conductor of electricity and its applications range from electronics to aerospace and medical technologies. However, its two-dimensional (2D) structure makes it mechanically fragile and limits its use in demanding environments and large-scale applications.

Molecular seal strengthens perovskite solar cells, while pushing efficiency to 26.6%

Perovskite solar cells (PSCs) are known for their impressive ability to convert sunlight into energy, their low production costs and their lightweight design. They may well be the rising stars of renewable energy, but they are not yet as common as traditional solar panels. PSCs are also notoriously fragile and can break when heated during manufacturing.

But these problems could soon be a thing of the past. For their study published in the journal Science, a team from Xi’an Jiaotong University in China has developed a new method that protects the cells from damage during fabrication.

Foundation AI models trained on physics, not words, are driving scientific discovery

While popular AI models such as ChatGPT are trained on language or photographs, new models created by researchers from the Polymathic AI collaboration are trained using real scientific datasets. The models are already using knowledge from one field to address seemingly completely different problems in another.

While most AI models—including ChatGPT—are trained on text and images, a multidisciplinary team, including researchers from the University of Cambridge, has something different in mind: AI trained on physics.

Synthetic ‘muscle’ with microfluidic blood vessels shows promise for soft robotics

Researchers are continuing to make progress on developing a new synthetic material that behaves like biological muscle, an advancement that could provide a path to soft robotics, prosthetic devices and advanced human-machine interfaces. Their research, recently published in Advanced Functional Materials, demonstrates a hydrogel-based actuator system that combines movement, control and fuel delivery in a single integrated platform.

Biological muscle is one of nature’s marvels, said Stephen Morin, associate professor of chemistry at the University of Nebraska–Lincoln. It can generate impressive force, move quickly and adapt to many different tasks. It is also remarkable in its flexibility in terms of energy use and can draw on sugars, fats and other chemical stores, converting them into usable energy exactly when and where they are needed to make muscles move.

A synthetic version of muscle is one of the Holy Grails of material science.

Thinking on different wavelengths: New approach to circuit design introduces next-level quantum computing

Quantum computing represents a potential breakthrough technology that could far surpass the technical limitations of modern-day computing systems for some tasks. However, putting together practical, large-scale quantum computers remains challenging, particularly because of the complex and delicate techniques involved.

In some quantum computing systems, single ions (charged atoms such as strontium) are trapped and exposed to electromagnetic fields including laser light to produce certain effects, used to perform calculations. Such circuits require many different wavelengths of light to be introduced into different positions of the device, meaning that numerous laser beams have to be properly arranged and delivered to the designated area. In these cases, the practical limitations of delivering many different beams of light around within a limited space become a difficulty.

To address this, researchers from The University of Osaka investigated unique ways to deliver light in a limited space. Their work revealed a power-efficient nanophotonic circuit with optical fibers attached to waveguides to deliver six different laser beams to their destinations. The findings have been published in APL Quantum.

Raman sensors with push-pull alkyne tags amplify weak signals to track cell chemistry

Seeing chemistry unfold inside living cells is one of the biggest challenges of modern bioimaging. Raman microscopy offers a powerful way to meet this challenge by reading the unique vibrational signatures of molecules. However, cells are extraordinarily complex environments filled with thousands of biomolecules.

To make specific molecules stand out, researchers often attach small chemical probes, such as alkyne tags, that produce signals in a so-called cell-silent spectral window where native cellular components do not scatter light. This allows Raman microscopes to selectively detect the tagged molecules against an otherwise crowded molecular background. Despite this advantage, the widespread adoption of Raman microscopy in biology has been limited by one fundamental problem: Raman signals are extremely weak.

People are swayed by AI-generated videos even when they know they’re fake, study shows

Generative deep learning models are artificial intelligence (AI) systems that can create texts, images, audio files, and videos for specific purposes, following instructions provided by human users. Over the past few years, the content generated by these models has become increasingly realistic and is often difficult to distinguish from real content.

Many of the videos and images circulating on social media platforms today are created by generative deep learning models, yet the effects of these videos on the users viewing them have not yet been clearly elucidated. Concurrently, some computer scientists have proposed strategies to mitigate the possible adverse effects of fake content diffusion, such as clearly labeling these videos as AI-generated.

Researchers at University of Bristol recently carried out a new study set out to better understand the influence of deepfake videos on viewers, while also assessing user perceptions when AI-generated videos are labeled as “fake.” Their findings, published in Communications Psychology, suggest that knowing that a video was created with AI does not always make it less “persuasive” for viewers.

Data-driven 3D chromosome model reveals structural and dynamic features of DNA

Chromosomes are masters of organization. These long strings of DNA fold down into an ensemble of compact structures that keep needed parts of the genome accessible while tucking away those that aren’t used as often. Understanding the complexity of these structures has been challenging; chromosomes are large systems, and deciphering the structure and dynamics requires a combination of experimental data and theoretical approaches.

The FI-Chrom method, described in a recent publication by Rice’s José Onuchic and Vinícius Contessoto, is a new and effective approach for creating 3D maps of chromosomes from real-world data.

The study is published in the journal Proceedings of the National Academy of Sciences.

A new route to synthesize multiple functionalized carbon nanohoops

The field of nanomaterials is witnessing a transformative shift at the intersection of organic chemistry and molecular engineering. Among the most promising molecular structures are carbon nanohoops, of which [n]cycloparaphenylenes ([n]CPPs) are a representative example.

These ring-shaped structures represent the smallest possible slices of carbon nanotubes, which themselves are a widely renowned material of the 21st century.

Given that their structures can, in principle, be precisely tuned at the atomic level, nanohoops hold great potential as molecular components for next-generation optoelectronic devices, including high-resolution displays, photonic circuits, and responsive sensing materials.

/* */