Global plastics production is concentrated in oil-producing countries with advanced petrochemical industries, while plastics disposal has shifted from landfill to incineration, with recycling consistently low, according to a global trade-linked material flow analysis of plastics for the year 2022.
Coronary Artery Disease (CAD) is the most common cardiovascular disease worldwide, threatening human health, quality of life and longevity. Aging is a dominant risk factor for CAD. This study aims to investigate the potential mechanisms of aging-related genes and CAD, and to make molecular drug predictions that will contribute to the diagnosis and treatment.
We downloaded the gene expression profile of circulating leukocytes in CAD patients (GSE12288) from Gene Expression Omnibus database, obtained differentially expressed aging genes through “limma” package and GenaCards database, and tested their biological functions. Further screening of aging related characteristic genes (ARCGs) using least absolute shrinkage and selection operator and random forest, generating nomogram charts and ROC curves for evaluating diagnostic efficacy. Immune cells were estimated by ssGSEA, and then combine ARCGs with immune cells and clinical indicators based on Pearson correlation analysis. Unsupervised cluster analysis was used to construct molecular clusters based on ARCGs and to assess functional characteristics between clusters. The DSigDB database was employed to explore the potential targeted drugs of ARCGs, and the molecular docking was carried out through Autodock Vina.
A growing body of work suggests that cell metabolism — the chemical reactions that provide energy and building materials — plays a vital, overlooked role in the first steps of life.
In seawater, boron exists as electrically neutral boric acid, so it passes through reverse osmosis membranes that typically remove salt by repelling electrically charged atoms and molecules called ions. To get around this problem, desalination plants normally add a base to their treated water, which causes boric acid to become negatively charged. Another stage of reverse osmosis removes the newly charged boron, and the base is neutralized afterward by adding acid. Those extra treatment steps can be costly.
“Our device reduces the chemical and energy demands of seawater desalination, significantly enhancing environmental sustainability and cutting costs by up to 15 percent, or around 20 cents per cubic meter of treated water,” said Weiyi Pan, a postdoctoral researcher at Rice University and a study co-first author.
The limitations of current symptom-focused treatments drive the urgent need for effective therapies for autism and Fragile X syndrome (FXS). Currently, no approved pharmacological interventions target the core symptoms of these disorders. Advances in understanding the underlying biology of autism and FXS make this an important time to explore novel options. Indeed, several treatments have recently been tested in clinical trials, with promising results in treating core symptoms of autism and FXS. We focus on emerging interventions, such as gut microbiome therapies, anti-inflammatory approaches, bumetanide, phosphodiesterase 4D inhibitors, and endocannabinoid modulators. We also discuss factors, such as disorder heterogeneity, which may have contributed to poor efficacy in previously failed late-phase trials and impact recent trials, emphasizing the need for personalized treatment approaches.
The Brain Prize 2025 went to neuro-oncologists Michelle Monje and Frank Winkler for pioneering the field of cancer neuroscience.
Due to ever-accelerating urbanization in recent decades, exploring the contributions of trees in mitigating atmospheric carbon in urban areas has become one of the paramount concerns. Remote sensing-based approaches have been primarily implemented to estimate the tree-stand atmospheric carbon stock (CS) for the trees in parks and streets. However, a convenient yet high-accuracy computation methodology is hardly available. This study introduces an approach that has been tested for a small urban area. A data fusion approach based on a three-dimensional (3D) computation methodology was applied to calibrate the individual tree CS. This photogrammetry-based technique employed an unmanned aerial vehicle (UAV) and spherical image data to compute the total height (H) and diameter at breast height (DBH) for each tree, consequently estimating the tree-stand CS.
Over the past decades, researchers have developed a wide range of advanced social and assistance robots that could soon be introduced into households worldwide. Understanding how the introduction of these systems might impact the lives of users and their interactions with others living in their homes is crucial, as it could inform the further improvement of robots before their widespread deployment.
Recent studies suggest that household robot companions could foster educational conversations between parents and children, particularly during story-reading sessions. By actively participating in these sessions, for instance by asking questions or assuming the role of a playmate, robots were found to augment interactions between children and their caregivers, enriching their conversations and supporting the children’s acquisition of new vocabulary.
Researchers at the Massachusetts Institute of Technology (MIT) recently carried out a study to further explore the potential of social robots as conversation catalysts and tools to enhance interactions between children and parents. Their findings, published in Science Robotics, suggest that English-speaking robots can improve the quality of dialogue between parents and children, with families that fluently speak English benefitting more from their use.