Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Are talented youth nurtured the wrong way? Top performers develop differently than assumed, says study

Traditional research into giftedness and expertise assumes that the key factors to develop outstanding achievements are early performance (e.g., in a school subject, sport, or in concerts) and corresponding abilities (e.g., intelligence, motor skills, musicality) along with many years of intensive training in a discipline. Accordingly, talent programs typically aim to select the top-performing youth and then seek to further accelerate their performance through intensive discipline-specific training.

However, this is apparently not the ideal way to promote young talent, as a team led by Arne Güllich, professor of sports science at RPTU University Kaiserslautern-Landau, has recently discovered.

The work is published in the journal Science.

Study examines oligodendrocyte dynamics throughout the progression of multiple sclerosis

Multiple sclerosis (MS) is a chronic autoimmune disease characterized by the disruption of nerve signals and various associated neurological symptoms, ranging from vision problems to numbness, weakness, fatigue and cognitive impairments. These symptoms emerge when the immune system starts to attack mature oligodendrocytes (MOLs), specialized cells that produce the protective sheath surrounding nerve fibers (i.e., myelin).

There are several subtypes of MOLs, which might exhibit different immune cell-like genetic responses in patients diagnosed with MS. While various studies have investigated the neural and molecular underpinnings of MS, how these different cell subtypes respond as the disease progresses has not yet been elucidated.

Researchers at Karolinska Institute in Sweden recently carried out a mouse study aimed at mapping how different MOL subtypes might differ in their sensitivity to neuroinflammation across different stages of MS.

Scientists unravel neural networks that guide guilt and shame-driven behaviors

Feelings of guilt and shame can lead us to behave in a variety of different ways, including trying to make amends or save face, cooperating more with others or avoiding people altogether. Now, researchers have shed light on how the two emotions emerge from cognitive processes and in turn guide how we respond to them.

Their study is published in eLife. The editors say it provides compelling behavioral, computational and neural evidence to explain the cognitive link between emotions and compensatory actions. They add that the findings have broad theoretical and practical implications across a range of disciplines concerned with human behavior, including psychology, neuroscience, public policy and psychiatry.

Private donors pledge $1 billion for world’s largest particle accelerator

Europe’s physics lab CERN on Thursday said private donors had pledged $1 billion toward the construction of a new particle accelerator that would be by far the world’s biggest.

In a first, private individuals and philanthropic foundations have backed a flagship research project at CERN, the European Organization for Nuclear Research, which seeks to unravel what the universe is made of and how it works.

The donors include the Breakthrough Prize Foundation of billionaire Silicon Valley investor Yuri Milner; the Eric and Wendy Schmidt Fund for Strategic Innovation of former Google chief executive Eric Schmidt; plus Italian Agnelli family heir John Elkann, and French telecoms tycoon Xavier Niel.

Research reinvents MXene synthesis at a fraction of the cost

MXenes (pronounced like the name “Maxine”) are a class of two-dimensional materials, first identified just 14 years ago, with remarkable potential for energy storage, catalysts, ultrastrong lightweight composites, and a variety of other purposes ranging from electromagnetic shielding to ink that can carry a current.

But manufacturing MXenes has been expensive, difficult and crude.

“MXenes have been made by a very elaborate, multi-step process that involved days of high-temperature work, followed by using dangerous chemicals like hydrofluoric acid and creating a lot of waste,” said Prof. Dmitri Talapin of the University of Chicago Pritzker School of Molecular Engineering (UChicago PME) and Department of Chemistry. “That may have been okay for early-stage research and lab exploration, but became a big roadblock for taking the next step to large-scale applications.”

Hybrid excitons: Combining the best of both worlds

Faster, more efficient, and more versatile—these are the expectations for the technology that will produce our energy and handle information in the future. But how can these expectations be met? A major breakthrough in physics has now been made by an international team of researchers from the Universities of Göttingen, Marburg, the Berlin Humboldt in Germany, and Graz in Austria.

The scientists combined two highly promising types of material—organic semiconductors and two-dimensional semiconductors—and studied their combined response to light using photoelectron spectroscopy and many-body perturbation theory.

This enabled them to observe and describe fundamental microscopic processes, such as energy transfer, at the 2D-organic interface with ultrafast time resolution, meaning one quadrillionth of a second. The combination of these properties holds promise for developing new technology such as the next generation of solar cells. The results are published in Nature Physics.

Batteries lose charge when they ‘breathe’: Understanding deterioration is a step toward longer-lasting batteries

Researchers have identified a key reason why the batteries used to power everything from smartphones to electric vehicles deteriorate over time, a critical step toward building faster, more reliable and longer-lasting batteries.

The research team from The University of Texas at Austin, Northeastern University, Stanford University and Argonne National Laboratory found that every cycle of charge and discharge causes batteries to expand and contract, similar to human breathing. This action causes battery components to warp just a tiny amount, putting strain on the battery and weakening it over time. This phenomenon, known as chemomechanical degradation, leads to reduced performance and lifespan.

The findings are published in the journal Science.

Putting the squeeze on dendrites: New strategy addresses persistent problem in next-generation solid-state batteries

New research by Brown University engineers identifies a simple strategy for combating a major stumbling block in the development of next-generation solid-state lithium batteries.

Solid-state batteries are considered the next frontier in energy storage, particularly for electric vehicles. Compared to current liquid electrolyte batteries, solid-state batteries have the potential for faster charging, longer range and safer operation due to decreased flammability. But there’s been a consistent problem holding back their commercialization: lithium dendrites.

Dendrites are filaments of lithium metal that can grow inside a battery’s electrolyte (the part of the battery that separates the anode from the cathode) during charging at high current. When they grow across the electrolyte, dendrites cause circuits between the battery’s anode and cathode, which destroy the battery. So while solid electrolytes can—in theory—enable faster charging than liquid electrolytes, the dendrite problem is one of the primary limitations that has to date prevented them from reaching that potential.

‘AI advisor’ helps self-driving labs share control in creation of next-generation materials

“Self-driving” or “autonomous” labs are an emerging technology in which artificial intelligence guides the discovery process, helping design experiments or perfecting decision strategies.

While these labs have generated heated debate about whether humans or machines should lead scientific research, a new paper from Argonne National Laboratory and the University of Chicago Pritzker School of Molecular Engineering (UChicago PME) has proposed a novel answer: Both.

In the paper published in Nature Chemical Engineering, the team led by UChicago PME Asst. Prof. Jie Xu, who has a joint appointment at Argonne, outlined an “AI advisor” model that helps humans and machines share the driver’s seat in self-driving labs.

Archimedean screw inspires new way to encode chirality into magnetic materials

In physics and materials science, the term “spin chirality” refers to an asymmetry in the arrangement of spins (i.e., the intrinsic angular momentum of particles) in magnetic materials. This asymmetry can give rise to unique electronic and magnetic behaviors that are desirable for the development of spintronics, devices that leverage the spin of electrons and electric charge to process or store information.

The creation of materials that exhibit desired spin chirality and associated physical effects on a large scale has so far proved challenging. In a recent paper published in Nature Nanotechnology, researchers at École Polytechnique Fédérale de Lausanne (EPFL), the Max Planck Institute for Chemical Physics of Solids and other institutes introduced a new approach to encode chirality directly into materials by engineering their geometry at a nanoscale.

“Dirk and myself were initially inspired by the elegance of the Archimedean screw and began wondering whether we could build a magnonic analog, something that could ‘pump’ magnons (i.e., collective electron spin excitations) in a similarly directional way,” Dr. Mingran Xu, first author of the paper, told Tech Xplore.

/* */