Living organisms are made up of hundreds of thousands of cells that cooperate to create the organs and systems that breathe, eat, move, and think. Now, researchers from Japan have developed a new way to track how and when cells touch each other to work together in these ways. In a study published in January in Cell Reports Methods, researchers from The University of Osaka reported the development of fluorescent markers for monitoring cell communication under a microscope.
Cells communicate with each other by making cell-to-cell contacts, and fluorescent markers are often used to visualize these contacts. The most commonly used marker for this purpose is green fluorescent protein (GFP). GFP can be divided into two halves that are expressed on different cells. When the cells touch, the two halves come together to form a complete GFP, letting off a fluorescent signal.
“Split GFP is useful for detecting the formation of stable connections between cells,” says lead author of the study Takashi Kanadome. “But because it takes time for the rejoined GFP to emit its signal and the association is irreversible, this approach cannot be used to detect dynamic cell–cell interactions in real-time.”
An array of 15,000 qubits made from phosphorus and silicon offers an unprecedentedly large platform for simulating quantum materials such as perfect conductors of electricity
Satellites and spacecraft in the vast region between the earth and moon and just beyond — called cislunar space — are crucial for space exploration, scientific advancement and national security. But figuring out where exactly to put them into a stable orbit can be a huge, computationally expensive challenge.
In an open-access database and with publicly available code, researchers at Lawrence Livermore National Laboratory (LLNL) have simulated and published one million orbits in cislunar space. The effort, enabled by supercomputing resources at the Laboratory, provides valuable data that can be used to plan missions, predict how small perturbations might change orbits and monitor space traffic.
To begin, the Space Situational Awareness Python package takes in a range of initial conditions for an orbit, like how elliptical and tilted the orbit is and how far it gets from the earth.
Scientists say a real warp drive may no longer be pure science fiction, thanks to new breakthroughs in theoretical physics. Recent studies suggest space itself could be compressed and expanded, allowing faster-than-light travel without breaking known laws of physics. Unlike sci-fi engines, this concept wouldn’t move a ship through space — it would move space around the ship. Researchers are now exploring how energy, gravity, and exotic matter could make this possible. In this video, we explain how a warp drive could work and how close science really is.
Are we living inside a computer simulation? The evidence is more compelling than you think.
In this deep exploration of the Simulation Hypothesis, we examine the scientific and philosophical arguments that suggest our reality might be code. From Nick Bostrom’s groundbreaking trilemma to quantum mechanics acting like a computer program, from the fine-tuned constants of physics to Elon Musk’s probabilistic arguments—we follow the evidence wherever it leads. Whether we’re simulated or not, the question reveals profound truths about consciousness, reality, and what it means to be human.
A neuroscientist, a philosopher and a physicist convene to discuss one of the biggest and most significant questions of all time: human consciousness, what we know and don’t know about it, and whether science will ever be able to understand what makes you, you.
Recorded Oct 16, 2016 at The 92nd Street Y, New York.
The company is already the world’s largest battery maker, supplying cells to major automakers. With this latest development, the battery giant is positioning itself at the center of the race to deliver gasoline-like convenience without sacrificing durability.
The core challenge engineers set out to address was whether an EV battery could withstand repeated ultra-fast charging without rapid degradation. A 5C charge rate means an 80-kilowatt-hour battery pack could theoretically accept around 400 kilowatts of power. That level of charging can refill a battery in roughly 12 minutes, similar to a typical gas stop.
Fast charging has long been associated with faster wear. The engineers tested whether the chemistry could handle that stress over time. According to the company, the answer was yes. Under standard conditions at 68°F, the battery retained at least 80 percent of its original capacity after 3,000 full charge-and-discharge cycles.
Experimental realizations of discrete time crystals have mainly involved 1D models with Ising-like couplings. Here, the authors realize a 2D discrete time crystal with anisotropic Heisenberg coupling on a quantum simulator based on superconducting qubits, uncovering a rich phase diagram.