Toggle light / dark theme

Conclusions: Most studies demonstrated the use of VR to be effective for supporting the treatment of anxiety or depression in a range of settings and recommended its potential as a tool for use in a clinical environment. Even though standalone headsets are much easier to work with and more suitable for home use, the shift from tethered VR headsets to standalone headsets in the mental health environment was not observed. All studies that looked at the use of CBT either in vivo or in a virtual environment found it to be effective in supporting the treatment of anxiety or depression.

Keywords: CBT; anxiety; depression; mental health; virtual reality.

©Nilufar Baghaei, Vibhav Chitale, Andrej Hlasnik, Lehan Stemmet, Hai-Ning Liang, Richard Porter. Originally published in JMIR Mental Health (https://mental.jmir.org), 23.09.2021.

Like this video about how Viva Vita addresses loneliness and depression in the elderly using VR. Subscribe here: https://freeth.ink/youtube-subscribe-depressionintheelderly.

Watch the next video in our series on virtual reality therapy: https://youtu.be/IZE41KejIBw.

In the United States, about six million people over the age of 65 experience late life depression and about one-third of seniors feel lonely.

Viva Vita is taking a novel approach to addressing both loneliness and depression in the elderly population.

A study published in Scientific Reports has shed light on the intricate relationship between the sense of presence in virtual reality (VR) environments and cognitive abilities. The study, titled “The role of sense of presence in expressing cognitive abilities in a virtual reality task: an initial validation study,” was conducted by a team of researchers coordinated by Dr. Andrea Chirico and marks a significant advancement in our understanding of how immersive technologies can influence cognitive functions.

The research team, which includes Prof. Antonio Giordano, Prof. Fabio Lucidi (Sapienza University of Rome), Dr. Luigi De Pietro (CNR ICAR, Italy), and others, set out to investigate the extent to which the sense of presence—the feeling of being “inside” a —impacts an individual’s cognitive performance. By employing advanced VR technology and designing a range of tasks to test cognitive abilities, the researchers were able to gather valuable insights.

One of the key findings of the study is that a stronger sense of presence is positively correlated with enhanced cognitive abilities. Participants who reported a heightened feeling of presence in the virtual tasks demonstrated improved performance in various cognitive domains. These domains include memory, attention, problem-solving, and decision-making.

In a novel attempt to reduce the risks of over sedation, physician-scientists at Beth Israel Deaconess Medical Center (BIDMC) conducted a randomized controlled trial to determine whether virtual reality immersion can minimize the need for sedatives during hand surgery without negatively impacting patient satisfaction. The team studied adults undergoing hand surgery who were randomized to receive either Virtual Reality (VR) immersion during the procedure in addition to usual MAC, or usual MAC alone. They found that VR immersion during hand surgery led to significant reductions in sedative doses as well as post-operative lengths of stay in the post anesthesia care unit (PACU). Their work is published in PLOS ONE.


BIDMC researchers conducted a randomized controlled trial that found virtual reality immersion during hand surgery reduced the need for sedatives.

Published: August 8, 2023 8.29am EDT

Alexis souchet, university of southern california.

The big idea.

Some employers are excited about swapping out computer monitors for virtual reality headsets, but the side effects of using VR are not completely understood. In a recent study, my colleagues and I propose 90 factors that could influence VR side effects in the workplace. In another study, we suggest guidelines to reduce these negative symptoms.

-In defense everything has negative syptoms. Nothing is perfect, and everything has negative things in it. If things were perfect we would be living in a much better world. Take religion for example, and they pay no tax.

A breakthrough at the Massachusetts Institute of Technology (MIT), funded by the Department of Energy (DOE), is utilizing the power of DNA to align quantum rods that may help usher in a new era of enhanced televisions and ultra-realistic virtual reality (VR) devices.

Some modern high-end TVs already make use of the dynamic luminescent qualities of two-dimensional (2D) quantum dots, but finding a way to tap into the superior qualities of their two-dimensional cousins, quantum rods, has remained elusive. However, the researchers behind this latest effort claim that the situation has now changed.

The Secrets of Realistic VR and Star Trek Holodecks May Lie in the Quantum Realm.

This research topic consists of 148 articles on various aspects of brain augmentation contributed by more than 600 authors. At the time of writing, the articles have been viewed online more than 1.3 million times and received plentiful citations in the scientific literature. The topic won the 2017 Frontiers Spotlight Award.

The topic theme, “Augmentation of brain function,” is an umbrella term for the approaches from different disciplines, aimed at the improvement of brain performance in both healthy people and patients suffering from neurological disabilities. Functions of the brain that scientists hope to augment belong to sensory, motor and cognitive domains. Brain enhancements could be achieved pharmacologically or using neurostimulation. Functional improvements can be also achieved with brain training techniques that employ modern technologies like computer games and virtual reality. Furthermore, brain performance can be augmented using brain-machine interfaces (BMIs), the pathways that connect neuronal circuits to external assistive devices, such as limb prostheses, exoskeletons, and communication aids. In addition to sending commands to external devices, BMIs can enable bidirectional communications, where artificial sensory signals are delivered to the brain while information is being decoded from neural recordings.

Even though many of the brain-augmenting ideas sound like science fiction, the topic authors feel optimistic about most of them. The overall consensus is that brain performance can be improved with artificial components, and this approach will lead to practical applications in the not-too-distant future. Many of the techniques covered in the topic, for example BMIs and noninvasive stimulation, have already experienced an explosive development. While expectations are high for the augmentation approaches, philosophers are warning about the ethical issues related to technologies that interfere with the mind, possibly in unpredictable ways. Although some of these concerns seem far-fetched, it is important that ethical standards are kept high as these revolutionary brain-augmenting methods are being developed.

They use a process called DNA origami.

This is according to a press release by the institution published on Friday.


TV screens equipped with quantum rods have the ability to generate 3D images for virtual reality devices. Now, MIT engineers have conceived of a way to precisely assemble arrays of quantum rods in the devices using scaffolds made of folded DNA that allow depth and dimensionality to be added to virtual scenes.

Challenges

Flat screen TVs that incorporate quantum dots are now commercially available, but it has been more difficult to create arrays of their elongated cousins, quantum rods, for commercial devices. Quantum rods can control both the polarization and color of light, to generate 3D images for virtual reality devices.

Using scaffolds made of folded DNA, MIT engineers have come up with a new way to precisely assemble arrays of quantum rods. By depositing quantum rods onto a DNA scaffold in a highly controlled way, the researchers can regulate their orientation, which is a key factor in determining the polarization of light emitted by the array. This makes it easier to add depth and dimensionality to a virtual scene.

“One of the challenges with quantum rods is: How do you align them all at the nanoscale so they’re all pointing in the same direction?” says Mark Bathe, an MIT professor of biological engineering and the senior author of the new study. “When they’re all pointing in the same direction on a 2D surface, then they all have the same properties of how they interact with light and control its polarization.”