Scientists are closer than ever to uncovering one of astronomy’s most elusive mysteries: Planet X. A groundbreaking telescope is set to revolutionize the search for the enigmatic ninth planet and challenge our understanding of the solar system’s boundaries.
Category: space – Page 6
Astronomers have made a remarkable discovery: a neutron star spinning at a staggering rate of 716 times per second, making it the fastest-spinning neutron star in the known universe, tied only with PSR J1748–2446. This stellar body, located in the binary system 4U 1820–30 within the NGC 6,624 globular cluster near the Milky Way’s center, is around 26 light-years from Earth in the constellation Sagittarius.
The discovery was made using NASA’s Neutron Star Interior Composition Explorer (NICER), an X-ray telescope mounted on the International Space Station. Gaurava K. Jaisawal from DTU Space shared that during observations of thermonuclear bursts, the team detected oscillations corresponding to a spin rate of 716 Hz, confirming the extreme speed.
Neutron stars, remnants of massive stars that have exhausted their nuclear fuel, are known for their rapid rotation and intense density. This newfound star is no exception, showcasing powerful thermonuclear blasts that briefly make it up to 100,000 times brighter than the Sun. These explosions occur as material from its companion star—a white dwarf in this case—accretes onto the neutron star’s surface, igniting under extreme pressure.
FRBs are so powerful that even after traveling billions of light-years, only around 50 have been traced back to their host galaxies.
Texas’ growth as a technology and data homebase isn’t slowing down anytime soon. This week, three firms announced the development of a massive, $1 billion data center being planned for North Texas.
Dallas-based fiber internet provider Gigabit Fiber, real estate firm Lincoln Property Co. and investment firm Tradition Holdings are reportedly partnering on the data center and tech space called GigaPop, set for a 131-acre tract of land in Red Oak, about 18 miles south of Dallas. Gigabit Fiber will begin construction of the 800,000-square-foot site in early 2025, starting with a 7,500-square-foot space.
We crafted our first rodent car from a plastic cereal container. After trial and error, my colleagues and I found that rats could learn to drive forward by grasping a small wire that acted like a gas pedal. Before long, they were steering with surprising precision to reach a Froot Loop treat.
As expected, rats housed in enriched environments – complete with toys, space and companions – learned to drive faster than those in standard cages. This finding supported the idea that complex environments enhance neuroplasticity: the brain’s ability to change across the lifespan in response to environmental demands.
After we published our research, the story of driving rats went viral in the media. The project continues in my lab with new, improved rat-operated vehicles, or ROVs, designed by robotics professor John McManus and his students. These upgraded electrical ROVs – featuring rat-proof wiring, indestructible tires and ergonomic driving levers – are akin to a rodent version of Tesla’s Cybertruck.
Scientists have discovered a rare six-planet system where all planets orbit their star in perfect mathematical harmony.
Join Territory to get access to perks:
https://www.youtube.com/channel/UC8SGU9hQEaJpsLuggAhS90Q/join.
The vast distances between stars make interstellar travel one of humanity’s most daunting challenges. Even the Voyager spacecrafts, now in interstellar space, would take tens of thousands of years to reach the nearest star, Alpha Centauri. To put this into perspective, Alpha Centauri is 277,000 astronomical units (AU) away—over 7,000 times the distance from Earth to Pluto. At current spacecraft speeds, a journey to our stellar neighbor would take an unimaginable 70,000 years. However, new ideas like the Sunbeam Mission offer a promising path forward, proposing innovative propulsion techniques that could shorten this timeline to mere decades.
The Sunbeam Mission centers around relativistic electron beam propulsion, where high-energy electron beams, accelerated close to the speed of light, push a spacecraft forward. This approach eliminates the need for onboard fuel, reducing the spacecraft’s mass and enabling greater acceleration. A stationary satellite, or statite, positioned near the Sun, would generate these electron beams by converting solar energy into electricity. Using materials and technologies like those developed for NASA’s Parker Solar Probe and European Space Agency’s Solar Orbiter, the statite could endure the Sun’s intense heat while directing the beam over vast distances. This could propel a spacecraft to 10% of the speed of light, allowing it to reach Alpha Centauri in about 40 years.
While the concept is ambitious, its challenges—like generating and maintaining the beam, energy conversion, spacecraft navigation, material durability, and beam focus—are not insurmountable. Current technologies, such as the Large Hadron Collider, high-temperature solar converters, and advanced heat-resistant materials, provide a foundation for overcoming these hurdles. Innovations in adaptive optics and laser communication systems also offer insights into managing beam precision over interstellar distances, demonstrating how existing advancements could be adapted for this revolutionary mission.
Electron transport in bilayer graphene exhibits a pronounced dependence on edge states and a nonlocal transport mechanism, according to a study led by Professor Gil-Ho Lee and Ph.D. candidate Hyeon-Woo Jeong of POSTECH’s Department of Physics, in collaboration with Dr. Kenji Watanabe and Dr. Takashi Taniguchi at Japan’s National Institute for Materials Science (NIMS).
The findings are published in the journal Nano Letters.
Bilayer graphene, comprising two vertically stacked graphene layers, can exploit externally applied electric fields to modulate its electronic band gap—a property essential for electron transport. This distinctive feature has drawn considerable attention for its prospective role in “valleytronics,” an emerging paradigm for next-generation data processing.
The Moon still holds mysteries that leave scientists in awe. A massive, heat-radiating object beneath its surface has sparked new questions about its origins.
This discovery offers a glimpse into the Moon’s hidden history, challenging what we thought we knew about our celestial neighbor.
The Moon, long considered a cold and barren landscape, has just revealed a fascinating new secret. Hidden beneath its far side lies a massive heat-emitting feature that has scientists buzzing with questions. This isn’t just any ordinary discovery—it involves a rare geological phenomenon typically associated with Earth.