Curious Kids is a series for children of all ages. If you have a question you’d like an expert to answer, send it to [email protected].
Category: space – Page 8
“Our successful PDR is a testament to the expertise and dedication of our team,” Starlab CEO Tim Kopra said in the statement. “This milestone confirms that our space station design is technically sound and safe for astronaut crewed operations. Now, with our partners, we shift our focus to the full-scale development of the station, including the manufacturing of critical hardware and software integration.”
The 12,000-cubic-foot (340-cubic-meter) Starlab will be fitted with a robotic arm and a set of racks for microgravity experiments to enable companies and researchers to develop new products in space. Voyager also hopes to seal a contract with NASA to host the agency’s astronauts.
Nanomaterials used to measure first nuclear reaction on radioactive nuclei produced in neutron star collisions
Posted in nanotechnology, nuclear energy, particle physics, space | Leave a Comment on Nanomaterials used to measure first nuclear reaction on radioactive nuclei produced in neutron star collisions
Physicists have measured a nuclear reaction that can occur in neutron star collisions, providing direct experimental data for a process that had previously only been theorized. The study, led by the University of Surrey, provides new insight into how the universe’s heaviest elements are forged—and could even drive advancements in nuclear reactor physics.
Working in collaboration with the University of York, the University of Seville, and TRIUMF, Canada’s national particle accelerator center, the breakthrough marks the first-ever measurement of a weak r-process reaction cross-section using a radioactive ion beam, in this case studying the 94 Sr(α, n)97 Zr reaction. This is where a radioactive form of strontium (strontium-94) absorbs an alpha particle (a helium nucleus), then emits a neutron and transforms into zirconium-97.
The study has been published in Physical Review Letters.
The collective motion of bacteria—from stable swirling patterns to chaotic turbulent flows—has intrigued scientists for decades. When a bacterial swarm is confined in small circular space, stable rotating vortices are formed. However, as the radius of this confined space increases, the organized swirling pattern breaks down into a turbulent state.
This transition from ordered to chaotic flow has remained a long-standing mystery. It represents a fundamental question not only in the study of bacterial behavior but also in classical fluid dynamics, where understanding the emergence of turbulence is crucial for both controlling and utilizing complex flows.
In a recent study published in Proceedings of the National Academy of Sciences on March 14, 2025, a research team led by Associate Professor Daiki Nishiguchi from the Institute of Science Tokyo, Japan, has revealed in detail how bacterial swarms transition from organized movement to chaotic flow. Combining large-scale experiments, computer modeling, and mathematical analysis, the team observed and explained previously unknown intermediate states that emerge between order and turbulence.
The heliosphere, a cosmic bubble formed by the Sun, protects our solar system from interstellar threats and influences life’s evolution. Despite its vital role, its true shape remains a puzzle, with data from Voyager missions hinting at its complexities. Upcoming interstellar probes aim to uncover more about this mysterious region.
The Sun does more than just warm the Earth, making it habitable for people and animals. It also shapes a vast region of space. This region, known as the heliosphere, extends more than a hundred times the distance between the Sun and Earth, influencing everything within it.
As a star, the Sun constantly emits a flow of charged particles called the solar wind, a stream of energized plasma.
A Swarm of Dwarf Galaxies Buzz Around Our Milky WayThe Milky Way is the galaxy that contains our Solar System and is part of the Local Group of galaxies. It is a barred spiral galaxy that contains an estimated 100–400 billion stars and has a diameter between 150,000 and 200,000 light-years. The name “Milky Way” comes from the appearance of the galaxy from Earth as a faint band of light that stretches across the night sky, resembling spilled milk. tabindex=0 Milky Way’s Twin.
It may someday be possible to listen to a favorite podcast or song without disturbing the people around you, even without wearing headphones. In a new advancement in audio engineering, a team of researchers led by Yun Jing, professor of acoustics in the Penn State College of Engineering, has precisely narrowed where sound is perceived by creating localized pockets of sound zones, called audible enclaves.
In an enclave, a listener can hear sound, while others standing nearby cannot, even if the people are in an enclosed space, like a vehicle, or standing directly in front of the audio source.
In a study published in the Proceedings of the National Academy of Sciences, the researchers explain how emitting two nonlinear ultrasonic beams creates audible enclaves, where sound can only be perceived at the precise intersection point of two ultrasonic beams.
“Our hope with this kind of research is to understand our own solar system, life, and ourselves in comparison to other exoplanetary systems, so we can contextualize our existence,” said William Balmer.
What can carbon dioxide in an exoplanet’s atmosphere teach us about its formation and evolution? This is what a recent study published in The Astrophysical Journal hopes to address as an international team of researchers made the first direct images of carbon dioxide in the atmospheres of two exoplanetary systems. This study has the potential to help researchers better understand the formation and evolution of exoplanet atmospheres and how this could lead to finding life as we know it, or even as we don’t know it.
For the study, the researchers used NASA’s James Webb Space Telescope (JWST) to analyze the atmospheres of exoplanets residing in the systems HR 8799 and 51 Eridani (51 Eri) with the direct imaging method. The HR 8,799 system is located approximately 135 light-years from Earth and hosts four known exoplanets whose masses range from five to nine times of Jupiter, and the 51 Eridani system is located approximately 97 light-years from Earth and hosts one known exoplanet whose mass is approximately four times of Jupiter. Both systems are very young compared to our solar system at approximately 4.6 billion years old, with HR 8,799 and 51 Eridani being approximately 30 million and 23 million years old, respectively.
“We can hardly wait for the flyby because, as of now, Donaldjohanson’s characteristics appear very distinct from Bennu and Ryugu. Yet, we may uncover unexpected connections,” said Dr. Simone Marchi.
How old is asteroid (52246) Donaldjohanson (DJ), which is about to be studied by NASA’s Lucy spacecraft in an upcoming flyby on April 20, 2025? This is what a recent study published in The Planetary Science Journal hopes to address as an international team of researchers conducted a pre-flyby analysis of DJ with the goal of ascertaining the asteroid’s potential age. This study has the potential to help scientists better understand the formation and evolution of asteroids throughout the solar system, and specifically the main asteroid belt, which is where DJ orbits.
For the study, the researchers used ground-based telescopes and instruments to analyze the size, shape, and composition of DJ with the goal of ascertaining its relative age. For context, relative age indicates an object’s approximate age based on observational and data analysis, which contrasts an object’s absolute age that is determined from laboratory analysis with samples. Lucy will only be conducting a flyby and will not be returning samples to Earth.
In the end, the researchers not only discovered that DJ has elongated shape with estimates putting its approximate age at 150 million years old and formed when a larger asteroid broke apart. This upcoming flyby comes after the Hayabusa2 and OSIRIS-REX missions visited asteroids Ryugu and Bennu, respectively, with DJ hypothesized to orbit in the approximate regions where both Ryugu and Bennu formed.
The spiral pattern is about 15,000 astronomical units wide, or around 1.4 trillion miles from one end to the other. It also appears to have a tilt of roughly 30 degrees relative to the usual plane of our Solar System.
That tilt and the elongated swirl may trace back to the galaxy’s own gravitational pulling, which could have twisted and shaped the inner Oort Cloud soon after the Solar System’s birth.
The simulations suggest that, early in the Solar System’s history, bits of icy debris were scattered and then gradually coaxed into a spiral alignment in the Oort Cloud by galactic forces.