Toggle light / dark theme

Oak Ridge National Laboratory’s research in quantum biology and AI has significantly improved the efficiency of CRISPR Cas9 genome editing in microbes, aiding in renewable energy development.

Scientists at Oak Ridge National Laboratory (ORNL) used their expertise in quantum biology, artificial intelligence, and bioengineering to improve how CRISPR Cas9 genome editing tools work on organisms like microbes that can be modified to produce renewable fuels and chemicals.

CRISPR is a powerful tool for bioengineering, used to modify genetic code to improve an organism’s performance or to correct mutations. The CRISPR Cas9 tool relies on a single, unique guide RNA.

Year 2015 face_with_colon_three


(Phys.org)—Quantum computers are inherently different from their classical counterparts because they involve quantum phenomena, such as superposition and entanglement, which do not exist in classical digital computers. But in a new paper, physicists have shown that a classical analog computer can be used to emulate a quantum computer, along with quantum superposition and entanglement, with the result that the fully classical system behaves like a true quantum computer.

Physicist Brian La Cour and electrical engineer Granville Ott at Applied Research Laboratories, The University of Texas at Austin (ARL: UT), have published a paper on the classical emulation of a quantum computer in a recent issue of The New Journal of Physics. Besides having fundamental interest, using classical systems to emulate quantum computers could have practical advantages, since such quantum emulation devices would be easier to build and more robust to decoherence compared with true quantum computers.

In 2015, the Laser Interferometer Gravitational-Wave Observatory, or LIGO

The Laser Interferometer Gravitational-Wave Observatory (LIGO) is a large-scale physics experiment and observatory supported by the National Science Foundation and operated by Caltech and MIT. It’s designed to detect cosmic gravitational waves and to develop gravitational-wave observations as an astronomical tool. It’s multi-kilometer-scale gravitational wave detectors use laser interferometry to measure the minute ripples in space-time caused by passing gravitational waves. It consists of two widely separated interferometers within the United States—one in Hanford, Washington and the other in Livingston, Louisiana.

Have you ever wished you could go back in time and invest in trailblazing companies like Apple (NASDAQ: AAPL), Amazon (NASDAQ: AMZN), or Tesla (NASDAQ: TSLA) before they hit it big? Well, you may just have that chance again today with quantum computing stocks.

The futuristic field of quantum computing has faced some bumps on its road to mainstream adoption lately. The recent Nasdaq correction has hit many once-hot quantum computing stocks hard. But this correction also presents a golden buying opportunity for investors who take the long view.

Sean Carroll is a theoretical physicist who serves as a Homewood Professor of Natural Philosophy at Johns Hopkins University. Carroll strives to convey complicated physics concepts in accessible terms on his Mindscape podcast and in his popular books, including last year’s The Biggest Ideas in the Universe: Space, Time, and Motion. He joins Preet to talk about the relationship between science and philosophy, how to comprehend quantum mechanics, and whether there are billions of similar universes operating alongside our own.

Plus, Special Counsel David Weiss’s testimony in front of the House Judiciary Committee about the Hunter Biden prosecution and Trump’s reported plan to use the Department of Justice for revenge if he retakes the presidency.

Don’t miss the Insider bonus, where Preet and Carroll talk more about depictions of time travel in Hollywood films. To listen, become a member of CAFE Insider for $1 for the first month. Head to cafe.com/insider.

Quantum materials hold the key to a future of lightning-speed, energy-efficient information systems. The problem with tapping their transformative potential is that in solids, the vast number of atoms often drowns out the exotic quantum properties electrons carry.

Rice University researchers in the lab of quantum materials scientist Hanyu Zhu found that when they move in circles, atoms can also work wonders: When the in a rare-earth crystal becomes animated with a corkscrew-shaped vibration known as a chiral phonon, the crystal is transformed into a magnet.

According to a new study published in Science, exposing cerium fluoride to ultrafast pulses of light sends its atoms into a dance that momentarily enlists the spins of electrons, causing them to align with the atomic rotation. This alignment would otherwise require a powerful magnetic field to activate, since cerium fluoride is naturally paramagnetic with randomly oriented spins even at zero temperature.

When you think of empty space, you almost certainly imagine a vacuum in which nothing interesting can ever happen. However, if we zoom in to tiny length scales where quantum effects start to become important, it turns out that what you thought was empty is actually filled at all times with a seething mass of electromagnetic activity, as virtual photons flicker in and out of existence. This unexpected phenomenon is known as the vacuum fluctuation field. However, because these fluctuations of light energy are so small and fleeting in time, it is difficult to find ways for matter to interact with them, especially within a single, integrated device.

In a study published this month in Nano Letters (“Electrical Detection of Ultrastrong Coherent Interaction between Terahertz Fields and Electrons Using Quantum Point Contacts”), researchers from the Institute of Industrial Science, The University of Tokyo succeeded in fabricating a single nanoscale hybrid system for doing exactly this. In their design, a quantum point contact connects a single on-chip split-ring resonator with a two-dimensional electron system.

Quantum Hall edge channels at the quantum point contact. (Image: University of Tokyo)

A method developed at the University of Duisburg-Essen makes it possible to read data from noisy signals. Theoretical physicists and their experimental colleagues have published their findings in the current issue of Physical Review Research. The method they describe could also be significant for quantum computers.

You know it from the car radio: The weaker the signal, the more disturbing the . This is even more true for laboratory measurements. Researchers from the Collaborative Research Center 1,242 and the Center for Nanointegration (CENIDE) at the University of Duisburg-Essen (UDE) have now described a method for extracting data from noise.

What is a bit in a conventional computer, i.e., state 1 (current on) or state 0 (current off), is taken over in the quantum computer by the quantum bits, or qubits for short. To do this, they need defined and distinguishable states, but they can overlap at the same time and therefore enable many times the computing power of a current computer. This means they could also be used where today’s supercomputers are overtaxed, for example in searching extremely large databases.

Not a perfect presentation but a quantum Internet will be nice. The question is, how will bad actors/Black Hat hackers adapt?


Dive into the mind-bending future of technology with our latest video, Quantum Internet Will Change The World In this groundbreaking exploration, we unravel the mysteries of quantum computing and its revolutionary potential to transform the way we connect online. Discover how quantum entanglement and superposition are reshaping the internet landscape, promising unparalleled security, lightning-fast speeds, and unimaginable data processing capabilities.

Join us on this journey through the quantum realm, where the laws of physics blur, and the internet as we know it takes a quantum leap into the future. Prepare to be amazed by the limitless possibilities that await in the world of quantum internet. Don’t miss out on this quantum revolution! Hit that subscribe button, click the notification bell, and stay tuned for more mind-expanding content. #QuantumInternet #FutureTech #InnovationRevolution #QuantumComputing #TechBreakthroughs #ai #thetechailab.tunnelvison