Menu

Blog

Archive for the ‘physics’ category: Page 7

Feb 17, 2020

Nearing the Simulation Singularity: What Would Immersive Computing Mean to the Human Mentality?

Posted by in categories: internet, mobile phones, physics, robotics/AI, singularity, supercomputing

Moving ever closer to the Web v.5.0 – an immersive virtual playground of the Metaverse – would signify a paramount convergent moment that MIT’s Rizwan Virk calls ‘The Simulation Point’ and I prefer to call the ‘Simulation Singularity’. Those future virtual worlds could be wholly devised and “fine-tuned” with a possibility to encode different sets of “physical laws and constants” for our enjoyment and exploration.


We are in the “kindergarten of godlings” right now. One could easily envision that with exponential development of AI-powered multisensory immersive technologies, by the mid-2030s most of us could immerse in “real virtualities” akin to lifestyles of today’s billionaires. Give it another couple of decades, each of us might opt to create and run their own virtual universe with [simulated] physics indistinguishable from the physics of our world. Or, you can always “fine-tune” the rule set, or tweak historical scenarios at will.

How can we be so certain about the Simulation Singularity circa 2035? By our very nature, we humans are linear thinkers. We evolved to estimate a distance from the predator or to the prey, and advanced mathematics is only a recent evolutionary addition. This is why it’s so difficult even for a modern man to grasp the power of exponentials. 40 steps in linear progression is just 40 steps away; 40 steps in exponential progression is a cool trillion (with a T) – it will take you 3 times from Earth to the Sun and back to Earth.

Continue reading “Nearing the Simulation Singularity: What Would Immersive Computing Mean to the Human Mentality?” »

Feb 15, 2020

Pitt study uncovers new electronic state of matter

Posted by in category: physics

A research team led by professors from the University of Pittsburgh Department of Physics and Astronomy has announced the discovery of a new electronic state of matter.

Jeremy Levy, a distinguished professor of condensed matter physics, and Patrick Irvin, a research associate professor are coauthors of the paper “Pascal conductance series in ballistic one-dimensional LaAIO3/SrTiO3 channels.” The research focuses on measurements in one-dimensional conducting systems where electrons are found to travel without scattering in groups of two or more at a time, rather than individually.

Continue reading “Pitt study uncovers new electronic state of matter” »

Feb 14, 2020

Study uncovers new electronic state of matter

Posted by in category: physics

A research team led by professors from the University of Pittsburgh Department of Physics and Astronomy has announced the discovery of a new electronic state of matter.

Jeremy Levy, a distinguished professor of condensed matter , and Patrick Irvin, a research associate professor are coauthors of the paper “Pascal conductance series in ballistic one-dimensional LaAIO3/SrTiO3 channels.” The research focuses on measurements in one-dimensional conducting systems where electrons are found to travel without scattering in groups of two or more at a time, rather than individually.

Continue reading “Study uncovers new electronic state of matter” »

Feb 13, 2020

The ESA is about to turn one of its spacecraft into a fireball

Posted by in categories: physics, solar power, space, sustainability

Next week, the European Space Agency is going to jettison a cubesat called Qarman from the International Space Station and watch it burst into a fireball as it reenters Earth’s atmosphere—all on purpose.

What’s the mission: Qarman (short for “QubeSat for Aerothermodynamic Research and Measurements on Ablation”) is a shoebox-sized experiment meant to help researchers better understand the physics at play when objects plummet into the planet’s atmosphere and burn up. Qarman was brought up to the ISS in December during a cargo resupply mission. On February 17, it will be cast back out into space and begin slowly drifting toward Earth before entering the atmosphere and burning up in about six months.

Tell me more: Qarman has four solar-cell-covered panels that are designed to increase atmospheric drag and hasten reentry. Its nose is made from a special kind of cork that’s typically used in thermal protection systems on spacecraft. Ground testing shows that when the cork heats up, it chars and flakes away a bit at a time. The Qarman team is interested in learning how this process works during reentry.

Continue reading “The ESA is about to turn one of its spacecraft into a fireball” »

Feb 12, 2020

Your decision-making ability is a superpower physics can’t explain

Posted by in category: physics

In a universe that unthinkingly follows the rules, human agency is an anomaly. Can physics ever make sense of our power to change the physical world at will?

Feb 12, 2020

Classical time crystals could exist in nature, say physicists

Posted by in categories: computing, physics

OmO.


Computer simulations show coupled oscillators behave as “activated time crystals”.

Feb 9, 2020

Metamaterial: Mail armor inspires physicists

Posted by in categories: mathematics, mobile phones, physics

Circa 2017


The Middle Ages certainly were far from being science-friendly: Whoever looked for new findings off the beaten track faced the threat of being burned at the stake. Hence, the contribution of this era to technical progress is deemed to be rather small. Scientists of Karlsruhe Institute of Technology (KIT), however, were inspired by medieval mail armor when producing a new metamaterial with novel properties. They succeeded in reversing the Hall coefficient of a material.

The Hall effect is the occurrence of a transverse electric voltage across an electric conductor passed by current flow, if this conductor is located in a . This effect is a basic phenomenon of physics and allows to measure the strength of magnetic fields. It is the basis of magnetic speed sensors in cars or compasses in smartphones. Apart from measuring magnetic fields, the Hall effect can also be used to characterize metals and semiconductors and in particular to determine charge carrier density of the material. The sign of the measured Hall voltage allows conclusions to be drawn as to whether in the semiconductor element carry positive or negative charge.

Continue reading “Metamaterial: Mail armor inspires physicists” »

Feb 8, 2020

Graphene: The magic material

Posted by in categories: materials, physics

Graphene is an allotropic form of carbon and posses some of the unique properties that are making this compound stand out of all other allotropic compounds of carbon. The compound was discovered in modern ages by two scientists Andre Geim and Konstantin Novoselov from the University of Manchester, UK. After its initial discovery the compound soon began to make impact on every field of life and in recognition to their work they were awarded a physics noble prize in 2010. Graphene has unique physical and chemical properties and is much lighter, flexible and strong than many previously existing compounds.

Feb 4, 2020

Lasers etch a ‘perfect’ solar energy absorber

Posted by in categories: nanotechnology, physics, solar power, sustainability

The University of Rochester research lab that recently used lasers to create unsinkable metallic structures has now demonstrated how the same technology could be used to create highly efficient solar power generators.

In a paper in Light: Science & Applications, the lab of Chunlei Guo, professor of optics also affiliated with Physics and the Material Sciences Program, describes using powerful femto-second pulses to etch with nanoscale structures that selectively absorb light only at the solar wavelengths, but not elsewhere.

Continue reading “Lasers etch a ‘perfect’ solar energy absorber” »

Feb 4, 2020

Curl-free magnetic fields for stellarator optimization

Posted by in category: physics

O.o.


This paper describes a new and efficient method of defining an annular region of a curl-free magnetic field with specific physics and coil properties that can be used in stellarator design. Three statements define the importance:

Codes can follow an optimized curl-free initial state to a final full-pressure equilibrium. The large size of the optimization space of stellarators.

Approximately fifty externally-produced distributions of magnetic field, makes success in finding a global optimum largely determined by the starting point.

Continue reading “Curl-free magnetic fields for stellarator optimization” »

Page 7 of 114First4567891011Last