Toggle light / dark theme

Emily Simpson has loved space since she was a 10-year-old kid celebrating her birthday at a planetarium. Now a recent Florida Tech graduate, she leaves with not only a dual degree in planetary science and astronomy and astrophysics but with published research, too. She mapped our solar system’s “alternate fate” had it housed an extra planet between Mars and Jupiter instead of the existing asteroid belt.

Simpson’s paper, “How might a planet between Mars and Jupiter influence the inner solar system? Effects on , obliquity, and eccentricity,” was published in Icarus, a journal devoted to the publication of research around solar system studies. It was co-authored by her advisor, assistant professor of Howard Chen.

They developed a 3D model that simulates how the solar system’s orbital architecture may have evolved differently with the formation of a planet that is at least twice the size of Earth’s mass—a super-Earth—instead of an asteroid belt.

A supermassive black hole in a distant galaxy is rewriting the rules of astrophysics, with unprecedented activity that has left astronomers around the world both fascinated and perplexed. Plasma jets traveling at record-breaking speeds and rapid X-ray fluctuations near the event horizon are just some of the strange phenomena observed in real time. What secrets is this cosmic behemoth revealing, and how might it reshape our understanding of black holes?

Of all the sciences, physics has been seen as the key to understanding everything. As Feynman said, “physics is the fundamental science.” But in this article, one of the world’s leading physicists, George F. R. Ellis, who collaborated with Stephen Hawking in work on spacetime’s geometry, argues that much of reality extends far beyond physics. Both complex objects like biological organisms and abstract entities like the rules of chess influence the world in ways that cannot be predicted by studying their simple physical constituents. Science, Ellis insists, is far richer than any single framework can ever capture.

1. Abstract Causation

Sign up to get exclusive access.

Multiterminal Josephson junctions, nanoscale devices with unique electronic properties, comprise non-superconducting metallic material coupled to three or more superconducting leads. These devices have proved to be promising platforms for the exploration of topological phenomena in condensed matter physics.

Researchers at Northwestern University and Aalto University recently proposed a new approach to studying the topological signatures of multiterminal Josephson junctions, which relies on the collection of resistance measurements.

Using their approach, outlined in a paper published in Physical Review Letters, they were able to observe these signatures, while also unveiling resistance patterns that are far richer than those predicted by physics theories.

Galactic gravity can dramatically impact wide binary stars, pushing them towards unexpected mergers or collisions.

The detection of gravitational waves.

Gravitational waves are distortions or ripples in the fabric of space and time. They were first detected in 2015 by the Advanced LIGO detectors and are produced by catastrophic events such as colliding black holes, supernovae, or merging neutron stars.

Chinese researchers say that recent advancements in the burgeoning field of inertial confinement fusion are bringing us one step closer to making accessible nuclear fusion a reality.

The new findings, which incorporate innovative new modeling approaches, could open new avenues for the exploration of the mysteries surrounding high-energy-density physics, and could potentially offer a window toward understanding the physics of the early universe.

Harnessing controlled nuclear fusion as a potential source of clean energy has seen several significant advancements in recent years, and the recent research by a Chinese team, funded by the Strategic Priority Research Program of Chinese Academy of Sciences and published in Science Bulletin last month, signals the next wave of insights with what the team calls a “surprising observation” involving supra-thermal ions during observations of fusion burning plasmas at National Ignition Facility (NIF) at Lawrence Livermore National Laboratory in California.

Stars are born in clouds of gas and dust, making it difficult to observe their early development. But researchers at Chalmers have now succeeded in simulating how a star with the mass of the sun absorbs material from the surrounding disk of material—a process called accretion.

The size and spin of black holes can reveal important information about how and where they formed, according to new research.

The study, led by scientists at Cardiff University, tests the idea that many of the black holes observed by astronomers have merged multiple times within densely populated environments containing millions of stars.

The work is published in the journal Physical Review Letters.