Toggle light / dark theme

When Albert Einstein introduced his theory of general relativity in 1915, it changed the way we viewed the universe. His gravitational model showed how Newtonian gravity, which had dominated astronomy and physics for more than three centuries, was merely an approximation of a more subtle and elegant model.

Einstein showed us that gravity is not a mere force but is rather the foundation of cosmic structure. Gravity, Einstein said, defined the structure of space and time itself.

But in the past century, we have learned far more about the cosmos than even Einstein could have imagined. Some of our observations, such as gravitational lensing clearly confirm general relativity, but others seem to poke holes in the model. The rotational motion of galaxies doesn’t match the predictions of gravity alone, leading astronomers to introduce .

Scientists in Germany have crafted “skyrmion bags” of light—complex vortex-like structures—on the surface of gold by cleverly manipulating how laser beams interact with nano-etched patterns.

This unusual feat not only adds a surprising twist to the physics of light but also hints at future technologies that could break the limits of current microscopes.

Skyrmion light bags: a new breakthrough

An avalanche is caused by a chain reaction of events. A vibration or a change in terrain can have a cascading and devastating impact.

A similar process may happen when living tissues are subject to being pushed or pulled, according to new research published in Nature Communications, by Northeastern University doctoral student Anh Nguyen and supervised by Northeastern physics professor Max Bi.

As , Bi and Nguyen use and mathematics to understand the mechanical processes that organisms undergo on a cellular level. With this more recent work, they have observed that when subjected to sufficient stress, tissues can “suddenly and dramatically rearrange themselves,” similar to how avalanches are formed in the wild.

Found in everything from kitchen appliances to sustainable energy infrastructure, stainless steels are used extensively due to their excellent corrosion (rusting) resistance. They’re an important material in many industries, including manufacturing, transportation, oil and gas, nuclear power and chemical processing.

However, stainless steels can undergo a process called sensitization when subjected to a certain range of high temperatures—like during welding—and this substantially deteriorates their resistance. Left unchecked, corrosion can lead to cracking and structural failure.

“This is a major problem for stainless steels,” says Kumar Sridharan, a professor of nuclear engineering and engineering physics and materials science and engineering at the University of Wisconsin–Madison. “When gets corroded, components need to be replaced or remediated. This is an expensive process and causes extended downtime in industry.”

Understanding the origin of heavy elements on the periodic table is one of the most challenging open problems in all of physics. In the search for conditions suitable for these elements via “nucleosynthesis,” a Los Alamos National Laboratory-led team is going where no researchers have gone before: the gamma-ray burst jet and surrounding cocoon emerging from collapsed stars.

As proposed in an article in The Astrophysical Journal, photons produced deep in the jet could dissolve the outer layers of a star into neutrons, causing a series of physical processes that result in the formation of heavy elements.

“The creation of heavy elements such as uranium and plutonium necessitates extreme conditions,” said Matthew Mumpower, physicist at Los Alamos. “There are only a few viable yet rare scenarios in the cosmos where these elements can form, and all such locations need a copious amount of neutrons. We propose a new phenomenon where those neutrons don’t pre-exist but are produced dynamically in the star.”

In every scientific discovery in the movies, a scientist observes something unexpected, scratches the side of his or her forehead and says “hmmmmm.” In just such a moment in real life, scientists from Canada observed unexpected flashes of curved green light from a red light-emitting polymer above its surface. The flashes were reminiscent of the colored arcs that auroras take above Earth’s poles, providing a clue as to their provenance.

Their resulting investigation of the new phenomenon could find applications towards understanding the failures of polymer materials and more. Their work has been published in Physical Review Letters.

Jun Gao, a professor and chair of Engineering Physics at the Engineering Physics and Astronomy Department at Queen’s University in Ontario, Canada, and graduate student Dongze Wang were investigating the performance of semiconductors called polymer light-emitting electrochemical cells, or PLECs.