Toggle light / dark theme

There are moments in the history of human thought when a simple realization transforms our understanding of reality. A moment when chaos reveals itself as structure, when disorder folds into meaning, and when what seemed like an arbitrary universe unveils itself as a system governed by hidden symmetries.

The Bekenstein bound was one such revelation—an idea that whispered to us that entropy, information and gravity are not separate but rather deeply intertwined aspects of the cosmos. Jacob Bekenstein, in one of the most profound insights of modern physics, proposed that the entropy of any physical system is not limitless; it is constrained by its energy and the smallest sphere that can enclose it.

This revelation was radical: Entropy—long regarded as an abstract measure of disorder—was, in fact, a quantity deeply bound to the fabric of space and time. His bound, expressed in its simplest form, suggested that the total information that could be stored in a region of space was proportional to its energy and its size.

Astrophysicists have once again enriched our knowledge of the cosmos with a new discovery: two small planets orbiting TOI-1453. Located at around 250 light years from Earth in the Draco constellation, this star is part of a binary system (a pair of stars orbiting each other) and is slightly cooler and smaller than our sun. This discovery, published in the journal Astronomy & Astrophysics, paves the way for future atmospheric studies to better understand these types of planets.

Around this star are two planets, a super-Earth and a sub-Neptune. These are types of planets that are absent from our own solar system, but paradoxically constitute the most common classes of planet in the Milky Way. This discovery sheds light on a planetary configuration that could provide valuable clues to the formation and evolution of planets.

Using data from NASA’s Transiting Exoplanet Survey Satellite (TESS) and the HARPS-N high-resolution spectrograph, the researchers were able to identify TOI-1453 b and TOI-1453 c, the two exoplanets orbiting TOI-1453.

BL Lacertae, an enigmatic blazar, has shattered long-held classification norms, leaving astronomers baffled. Originally mistaken for a variable star, this active galaxy emits high-energy jets that have suddenly defied expectations.

Observations from 2020–2023 revealed that BL Lacertae doesn’t neatly fit into any of the three known blazar categories, shifting unpredictably between classifications. This rapid transformation, particularly in X-ray emissions, has sparked intense debate about the underlying physics. Could it be an entirely new type of blazar? Or is an unknown mechanism at play, altering its radiation patterns at unprecedented speeds?

Mysterious Blazar Challenges Astronomers.

A new technique in detector fabrication could change high-energy physics forever.

By using additive manufacturing, researchers have developed a novel way to construct plastic scintillator detectors, drastically cutting costs and build time. Their first prototype, the SuperCube, has proven capable of tracking cosmic particles, marking a milestone for 3D-printed particle physics technology.

Next-Generation Neutrino Detection

Researchers at the University of Turku, Finland, have succeeded in producing sensors from single-wall carbon nanotubes that could enable major advances in health care, such as continuous health monitoring. Single-wall carbon nanotubes are nanomaterial consisting of a single atomic layer of graphene.

A long-standing challenge in developing the material has been that the nanotube manufacturing process produces a mix of conductive and semi-conductive nanotubes which differ in their chirality, i.e., in the way the graphene sheet is rolled to form the cylindrical structure of the nanotube. The electrical and chemical properties of nanotubes are largely dependent on their chirality.

Han Li, Collegium Researcher in materials engineering at the University of Turku, has developed methods to separate nanotubes with different chirality. In the current study, published in Physical Chemistry Chemical Physics, the researchers succeeded in distinguishing between two carbon nanotubes with very similar chirality and identifying their typical electrochemical properties.

Blog post with audio player, show notes, and transcript: https://www.preposterousuniverse.com/podcast/2019/06/17/epis…formation/

Patreon: https://www.patreon.com/seanmcarroll.

Cosmologists have a standard set of puzzles they think about: the nature of dark matter and dark energy, whether there was a period of inflation, the evolution of structure, and so on. But there are also even deeper questions, having to do with why there is a universe at all, and why the early universe had low entropy, that most working cosmologists don’t address. Today’s guest, Anthony Aguirre, is an exception. We talk about these deep issues, and how tackling them might lead to a very different way of thinking about our universe. At the end there’s an entertaining detour into AI and existential risk.

Anthony Aguirre received his Ph.D. in Astronomy from Harvard University. He is currently associate professor of physics at the University of California, Santa Cruz, where his research involves cosmology, inflation, and fundamental questions in physics. His new book, Cosmological Koans, is an exploration of the principles of contemporary cosmology illustrated with short stories in the style of Zen Buddhism. He is the co-founder of the Foundational Questions Institute, the Future of Life Institute, and the prediction platform Metaculus.

Like engineers who design high-performance Formula One race cars, scientists want to create high-performance plasmas in twisty fusion systems known as stellarators. Achieving this performance means that the plasma must retain much of its heat and stay within its confining magnetic fields.

To ease the creation of these plasmas, physicists have created a new computer code that could speed up the design of the complicated magnets that shape the plasma, making stellarators simpler and more affordable to build.

Known as QUADCOIL, the code helps scientists rule out plasma shapes that are stable but require magnets with overly complicated shapes. With this information, scientists can instead devote their efforts to designing stellarators that can be built affordably.

Our understanding of black holes, time and the mysterious dark energy that dominates the universe could be revolutionized, as new University of Sheffield research helps unravel the mysteries of the cosmos.

Black holes—areas of space where gravity is so strong that not even light can escape—have long been objects of fascination, with astrophysicists, and others dedicating their lives to revealing their secrets. This fascination with the unknown has inspired numerous writers and filmmakers, with novels and films such as “Interstellar” exploring these enigmatic objects’ hold on our collective imagination.

According to Einstein’s theory of , anyone trapped inside a black hole would fall toward its center and be destroyed by immense gravitational forces. This center, known as a singularity, is the point where the matter of a giant star, which is believed to have collapsed to form the black hole, is crushed down into an infinitesimally tiny point. At this singularity, our understanding of physics and time breaks down.

A multi-institutional team of physicists and engineers has developed a laser-based radiation detection system that operates from as far away as 10 meters and perhaps farther. Their research is published in the journal Physical Review Applied.

Working with , whether in creating weapons or energy, requires monitoring radiation levels to ensure the safety of workers. However, most detectors only allow for testing in close proximity to the source, which means a worker can be in danger of overexposure before they know it has happened. In this new study, the team assigned themselves the goal of developing a new type of system or device that could be used to test from much farther away.

The team started by noting that radiation interacts with in the air around it, resulting in the creation of , so it should be possible to measure the energy of those electrons using a . In testing their ideas, they found that firing a laser into irradiated air did lead to molecule collisions, which produced free electrons.