Scientists use math and physics to address the mystery of just how the endoplasmic reticulum, an organelle essential to life at the cellular level, continually re-arranges itself.
Ferroelectrics at the nanoscale exhibit a wealth of polar and sometimes swirling (chiral) electromagnetic textures that not only represent fascinating physics, but also promise applications in future nanoelectronics. For example, ultra-high-density data storage or extremely energy-efficient field-effect transistors. However, a sticking point has been the stability of these topological textures and how they can be controlled and steered by an external electrical or optical stimulus.
A team led by Prof. Catherine Dubourdieu (HZB and FU Berlin) has now published a paper in Nature Communications that opens up new perspectives. Together with partners from the CEMES-CNRS in Toulouse, the University of Picardie in Amiens and the Jozef Stefan Institute in Ljubljana, they have thoroughly investigated a particularly interesting class of nanoislands on silicon and explored their suitability for electrical manipulation.
“We have produced BaTiO3 nanostructures that form tiny islands on a silicon substrate,” explains Dubourdieu. The nano-islands are trapezoidal in shape, with dimensions of 30–60 nm (on top), and have stable polarization domains.
In a pioneering approach to achieve fusion energy, the SMART device has successfully generated its first tokamak plasma. This step brings the international fusion community closer to achieving sustainable, clean, and virtually limitless energy through controlled fusion reactions.
The work is published in the journal Nuclear Fusion.
The SMART tokamak, a state-of-the-art experimental fusion device designed, constructed and operated by the Plasma Science and Fusion Technology Laboratory of the University of Seville, is a unique spherical tokamak due to its flexible shaping capabilities. SMART has been designed to demonstrate the unique physics and engineering properties of Negative Triangularity shaped plasmas towards compact fusion power plants based on Spherical Tokamaks.
The Experimental Advanced Superconducting Tokamak (EAST), commonly known as China’s “artificial sun,” has achieved a remarkable scientific milestone by maintaining steady-state high-confinement plasma operation for an impressive 1,066 seconds. This accomplishment, reached on Monday, sets a new world record and marks a significant breakthrough in the pursuit of fusion power generation.
The duration of 1,066 seconds is a critical advancement in fusion research. This milestone, achieved by the Institute of Plasma Physics (ASIPP) at Hefei Institutes of Physical Science (HFIPS) of the Chinese Academy of Sciences, far surpasses the previous world record of 403 seconds, also set by EAST in 2023.
The ultimate goal of developing an artificial sun is to replicate the nuclear fusion processes that occur in the sun, providing humanity with a limitless and clean energy source, and enabling exploration beyond our solar system.
Watch any match at this year’s Australian Open and you’ll see balls curving in the air or bouncing higher or lower than expected. Players such as Novak Djokovic, Iga Swiatek and Coco Gauff are particularly masterful at the art.
The secret? It’s all about spin.
The ability to control a tennis ball’s spin has transformed the modern game, making it faster and more spectacular than ever. But how exactly do players make the ball move through the air or bounce off the court like that?
Neural network models that are able to make decisions or store memories have long captured scientists’ imaginations. In these models, a hallmark of the computation being performed by the network is the presence of stereotyped sequences of activity, akin to one-way paths. This idea was pioneered by John Hopfield, who was notably co-awarded the 2024 Nobel Prize in Physics. Whether one-way activity paths are used in the brain, however, has been unknown.
A collaborative team of researchers from Carnegie Mellon University and the University of Pittsburgh designed a clever experiment to perform a causal test of this question using a brain-computer interface (BCI). Their findings provide empirical support of one-way activity paths in the brain and the computational principles long hypothesized by neural network models.
Stereotyped sequences of neural population activity, also known as neural dynamics, is believed to underlie numerous brain functions, including motor control, sensory perception, decision making, timing, and memory, among others. The group focused on the brain’s motor system for their work, recently published in Nature Neuroscience, where neural population activity can be used to control a BCI.
Vector Institute’s Remarkable 2024 | Geoffrey Hinton — Will Digital Intelligence Replace Biological Intelligence?
In this profound keynote, Vector co-founder Geoffrey Hinton explores the philosophical implications of artificial intelligence and its potential to surpass human intelligence. Drawing from decades of expertise, Hinton shares his growing concerns about AI’s existential risks while examining fundamental questions about consciousness, understanding, and the nature of intelligence itself.
Geoffrey Hinton is one of the founding fathers of deep learning and artificial neural networks. He was a Vice President and Engineering Fellow at Google until 2023 and is Professor Emeritus at the University of Toronto. In 2024 Hinton was awarded the Nobel Prize in Physics.
Bright, twisted light can be produced with technology similar to an Edison light bulb, researchers at the University of Michigan have shown. The finding adds nuance to fundamental physics while offering a new avenue for robotic vision systems and other applications for light that traces out a helix in space.
“It’s hard to generate enough brightness when producing twisted light with traditional ways like electron or photon luminescence,” said Jun Lu, an adjunct research investigator in chemical engineering at U-M and first author of the study on the cover of this week’s Science.
“We gradually noticed that we actually have a very old way to generate these photons—not relying on photon and electron excitations, but like the bulb Edison developed.”