Toggle light / dark theme

Manu Prakash, an assistant professor of bioengineering at Stanford, and his students have developed a synchronous computer that operates using the unique physics of moving water droplets. Their goal is to design a new class of computers that can precisely control and manipulate physical matter. For more info: http://news.stanford.edu/news/2015/ju

Music: “Union Hall Melody” by Blue Dot Sessions.

Scientists at Goethe University Frankfurt have identified a new way to probe the interior of neutron stars using gravitational waves from their collisions. By analyzing the “long ringdown” phase—a pure-tone signal emitted by the post-merger remnant—they have found a strong correlation between the signal’s properties and the equation of state of neutron-star matter. Their results were recently published in Nature Communications.

Neutron stars, with a mass greater than that of the entire solar system confined within a nearly perfect sphere just a dozen kilometers in diameter, are among the most fascinating astrophysical objects known to humankind. Yet, the in their interiors make their composition and structure highly uncertain.

The collision of two neutron stars, such as the one observed in 2017, provides a unique opportunity to uncover these mysteries. As binary neutron stars inspiral for millions of years, they emit , but the most intense emission occurs at and just milliseconds after the moment of merging.

Viewers like you help make PBS (Thank you 😃). Support your local PBS Member Station here: https://to.pbs.org/DonateSPACE

Using geometry we can not only understand, but visualize how causality dictates the order of events in our universe. Start your Audible trial today at http://www.audible.com/spacetime.

You can further support us on Patreon at / pbsspacetime.
Get your own Space Time t­shirt at http://bit.ly/1QlzoBi.
Tweet at us! @pbsspacetime.
Facebook: facebook.com/pbsspacetime.
Email us! pbsspacetime [at] gmail [dot] com.
Comment on Reddit: / pbsspacetime.

Help translate our videos! In this episode we dive deeper into the relationship between space and time and explore how we can geometrically map the causality of the universe and increase our understanding of how time and distance relate to one another. Important Reference Episodes: The Speed of Light is not about Light (1:16) • The Speed of Light is NOT About Light Can You Trust Your Eyes in Space Time? (1:16) • Can You Trust Your Eyes in Spacetime? Previous Episode: Why Quasars are so Awesome • Why Quasars are so Awesome | Space Time Written and hosted by Matt O’Dowd Produced by Rusty Ward Graphics by Grayson Blackmon Made by Kornhaber Brown (www.kornhaberbrown.com) Comments Answered by Matt: Michael Lloyd • The Phantom Singularity | Space Time Jose Hernandez • The Phantom Singularity | Space Time Joan Eunice • Why Quasars are so Awesome | Space Time Mike Cammiso • Why Quasars are so Awesome | Space Time Bikram Sao • Why Quasars are so Awesome | Space Time Cinestar Productions • Why Quasars are so Awesome | Space Time Special thanks to our Patreon Big Bang, Quasar and Hypernova Supporters: Big Bang Henry Van Styn David Nicklas Quasar Jelle Slaets Tambe Barsbay Joel Brinton Luna IT Solutions Hypernova Joe Chuck Zegar Craig Peterson Jordan Young Ratfeast John Hofmann Thanks to our Patreon Gamma Ray Burst Supporters: Bernardo Higuera Erik Stein Daniel Lyons Avan & Kyan Griggs Bernardo Higuera Jade Bilkey Kevin Warne JJ Bagnell J Rejc Michael Fischer Dylan Merida Amy Jie Anthony Caridi Avi Goldfinger Corey Smeaton John Pettit Shannan Catalano Florian Stinglmayr Yubo Du Benoit Pagé-Guitard Ronny Polonia Nathan Leniz Jessica Fraley Kirk Mathews Loro Lukic Carl P. Corliss Brandon labonte David Crane Greg Weiss Eric Jackson Will and Sonja Marple.

In this episode we dive deeper into the relationship between space and time and explore how we can geometrically map the causality of the universe and increase our understanding of how time and distance relate to one another.

Important Reference Episodes:

A new climate modeling study published in the journal Science Advances by researchers from the IBS Center for Climate Physics (ICCP) at Pusan National University in South Korea presents a new scenario of how climate and life on our planet would change in response to a potential future strike of a medium-sized (~500 m) asteroid.

The solar system is full of objects with near-Earth orbits. Most of them do not pose any threat to Earth, but some of them have been identified as objects of interest with non-negligible collision probabilities. Among them is the asteroid Bennu with a diameter of about 500 m, which—according to recent studies—has an estimated chance of 1 in 2700 of colliding with Earth in September 2182. This is similar to the probability of flipping a coin 11 times in a row with the same outcome.

To determine the potential impacts of an asteroid strike on our climate system and on and plankton in the ocean, researchers from the ICCP set out to simulate an idealized collision scenario with a medium-sized asteroid using a state-of-the-art climate model.

The study of ‘starquakes’ (like earthquakes, but in stars) promises to give us important new insights into the properties of neutron stars (the collapsed remnants of massive stars), according to new research led by the University of Bath in the UK.

Such explorations have the potential to challenge our current approaches to studying , with important impacts for the future of both nuclear physics and astronomy. Longer term, there may also be implications in the fields of health, security and energy.

The value of studying asteroseismology—as these vibrations and flares are known—has emerged from research carried out by an international team of physicists that includes Dr. David Tsang and Dr. Duncan Neill from the Department of Physics at Bath, along with colleagues from Texas A&M and the University of Ohio.

Superconducting materials are similar to the carpool lane in a congested interstate. Like commuters who ride together, electrons that pair up can bypass the regular traffic, moving through the material with zero friction.

But just as with carpools, how easily can flow depends on a number of conditions, including the density of pairs that are moving through the material. This “superfluid stiffness,” or the ease with which a current of electron pairs can flow, is a key measure of a material’s superconductivity.

Physicists at MIT and Harvard University have now directly measured superfluid stiffness for the first time in “magic-angle” graphene—materials that are made from two or more atomically thin sheets of graphene twisted with respect to each other at just the right angle to enable a host of exceptional properties, including unconventional superconductivity.

Discover how Caltech’s groundbreaking research on ultrathin light sails is revolutionizing space travel. This video explains the innovative design, precise measurements, and surprising discoveries that are paving the way for interstellar propulsion. Dive into the science behind using laser-driven membranes to propel spacecraft and learn why this breakthrough is a game-changer for future space exploration.

Paper link: https://www.nature.com/articles/s4156… 00:00 Introduction 00:57 Experimental Innovations in Lightsail Design 03:56 Precision Measurement of Radiation Pressure 07:37 Future Directions, Implications, and a Relevant Discovery 11:06 Outro 11:16 Enjoy MUSIC TITLE: Starlight Harmonies MUSIC LINK: https://pixabay.com/music/pulses-star… Visit our website for up-to-the-minute updates: www.nasaspacenews.com Follow us Facebook: / nasaspacenews Twitter: / spacenewsnasa Join this channel to get access to these perks: / @nasaspacenewsagency #NSN #NASA #Astronomy#InterstellarLightsail #Caltech #SpaceExploration #BreakthroughStarshot #LaserPropulsion #Nanotechnology #SpaceTech #InterstellarTravel #LightsailDesign #Physics #Astrophysics #SpaceInnovation #RocketScience #FutureTech #LaserSail #PhotonPropulsion #SciTech #SpaceResearch #Astronomy #Innovation #ScienceNews #Interstellar #SpaceMission #LabResearch #Nanofabrication #EdgeScattering #RadiationPressure #Metamaterials #SpaceExplorationNews #NextGenTech.

Chapters:
00:00 Introduction.
00:57 Experimental Innovations in Lightsail Design.
03:56 Precision Measurement of Radiation Pressure.
07:37 Future Directions, Implications, and a Relevant Discovery.
11:06 Outro.
11:16 Enjoy.

MUSIC TITLE: Starlight Harmonies.
MUSIC LINK: https://pixabay.com/music/pulses-star

Visit our website for up-to-the-minute updates:
www.nasaspacenews.com.

Follow us.

In physics, the term “isotropy” means a system where the properties are the same in all directions. For fusion, neutron energy isotropy is an important measurement that analyzes the streams of neutrons coming from the device and how uniform they are. This is critical because so-called isotropic fusion plasmas suggest a stable, thermal plasma that can be scaled to higher fusion energy gains, whereas anisotropic plasmas, those emitting irregular neutron energies, can lead to a dead end.

A new Zap research paper, published in Nuclear Fusion, details neutron isotropy measurements from the FuZE that provide the best validation yet that Zap’s sheared-flow-stabilized Z pinches generate stable, thermal . It’s a benchmark milestone for scaling fusion to higher energy yields in Zap’s technology and giving confidence in reaching higher performance on the FuZE-Q device.

“Essentially, this measurement indicates that the is in a ,” says Uri Shumlak, Zap’s Chief Scientist and Co-Founder. “That means we can double the size of the plasma and expect the same sort of equilibrium to exist.”