Toggle light / dark theme

At Argonne National Laboratory, scientists have leveraged the Frontier supercomputer to create an unprecedented simulation of the universe, encompassing a span of 10 billion light years and incorporating complex physics models.

This monumental achievement allows for new insights into galaxy formation and cosmic evolution, showcasing the profound capabilities of exascale computing.

Breakthrough in Universe Simulation.

Researchers have pioneered the use of parallel computing on graphics cards to simulate acoustic turbulence. This type of simulation, which previously required a supercomputer, can now be performed on a standard personal computer. The discovery will make weather forecasting models more accurate while enabling the use of turbulence theory in various fields of physics, such as astrophysics, to calculate the trajectories and propagation speeds of acoustic waves in the universe. The research was published in Physical Review Letters.

Turbulence is the complex chaotic behavior of fluids, gases or nonlinear waves in various physical systems. For example, at the ocean surface can be caused by wind or wind-drift currents, while turbulence of laser radiation in optics occurs as light is scattered by lenses. Turbulence can also occur in sound waves that propagate chaotically in certain media, such as superfluid helium.

In the 1970s, Soviet scientists proposed that turbulence occurs when sound waves deviate from equilibrium and reach large amplitudes. The theory of wave turbulence applies to many other wave systems, including magnetohydrodynamic waves in the ionospheres of stars and giant planets, and perhaps even in the early universe. Until recently, however, it has been nearly impossible to predict the propagation patterns of nonlinear (i.e., chaotically moving) acoustic and other waves because of the high computational complexity involved.

In today’s AI news, François Chollet, an influential AI researcher, is launching a new startup that aims to build frontier AI systems with novel designs. The startup, Ndea, will consist of an AI research and science lab. It’s looking to “develop and operationalize” AGI. It’s a goalpost for many AI companies …

In other advancements, San Francisco-based Luma released Ray2, its newest video AI generation model, available now through its Dream Machine website and mobile apps for paying subscribers (to start). The model offers “fast, natural coherent motion and physics,” according to CEO Amit Jain.

And, Microsoft has been positioning Copilot as the “UI for AI.” Now, as the next step in this work, it is launching Microsoft 365 Copilot Chat — a rebranded version of its free AI chat experience for businesses, enhanced with agentic capabilities.

Meanwhile, the World Economic Forum surveyed 1,000 global employers, who collectively employ more than 14.1 million workers across 22 industries, for its Future of Jobs report—and it found that 41% of bosses think they’ll need to reduce their workforce in the next five years. Why? Because they predict there will be a pool of workers whose skills or roles become obsolete thanks to AI.

S. Get a guide to the concept of agents and multi-agent frameworks, and learn how to build complex AI applications that can drive business value. ” + s next in AI. ” + And, to kick off Possible’s fourth season, Reid and Aria sit down with world-renowned computer scientist Dr. Fei-Fei Li, whose work in artificial intelligence over the past several decades has earned her the nickname “the godmother of AI.” An entrepreneur and professor, Fei-Fei shares her journey …

In a bold new theory, researchers from Microsoft, Brown University, and other institutions suggest that the universe might be capable of teaching itself how to evolve. Their study, published on the preprint server arXiv, proposes that the physical laws we observe today may have emerged through a gradual learning process, akin to Darwinian natural selection or self-learning algorithms in artificial intelligence.

This radical idea challenges traditional cosmology by imagining a primitive early universe where physical laws like gravity were far simpler or even static. Over time, these laws “learned” to adapt into more complex forms, enabling the structured universe we observe today. For instance, gravity might have initially lacked distinctions between celestial bodies like Earth and the Moon. This progression mirrors how adaptable traits in biology survive through natural selection.

What lies beyond the beginning of time? Physicists are exploring groundbreaking ideas that could reveal a hidden universe behind the Big Bang.

This mind-bending theory challenges everything we know about existence and the mysteries of our cosmic origins.


Imagine rewinding the story of our universe —back through billions of years of expansion, past the formation of galaxies, stars, and planets, to the very beginning. What if, instead of a single moment of creation, there was a cosmic reflection—a mirror image of everything we know, moving backward in time?

Collapsed dead stars, known as neutron stars, are a trillion times denser than lead, and their surface features are largely unknown. Nuclear theorists have explored mountain building mechanisms active on the moons and planets in our solar system. Some of these mechanisms suggest that neutron stars are likely to have mountains.

Neutron star “mountains” would be much more massive than any on Earth—so massive that gravity just from these mountains could produce small oscillations, or ripples, in the fabric of space and time.

Mountains, or non-axisymmetric deformations of rotating neutron stars, efficiently radiate gravitational waves. In a study published in the journal Physical Review D, nuclear theorists at Indiana University consider analogies between neutron star mountains and surface features of solar system bodies.

In February 2016, scientists working for the Laser Interferometer Gravitational-Wave Observatory (LIGO) made history by announcing the first-ever detection of gravitational waves (GW). These waves, predicted by Einstein’s Theory of General Relativity, are created when massive objects collide (neutron stars or black holes), causing ripples in spacetime that can be detected millions or billions of light years away. Since their discovery, astrophysicists have been finding applications for GW astronomy, which include probing the interiors of neutron stars.

For instance, scientists believe that probing the continuous gravitational wave (CW) emissions from neutron stars will reveal data on their internal structure and equation of state and can provide tests of General Relativity. In a recent study, members of the LIGO-Virgo-KAGRA (LVK) Collaboration conducted a search for CWs from 45 known pulsars. While their results showed no signs of CWs emanating from their sample of pulsars, their work does establish upper and lower limits on the signal amplitude, potentially aiding future searches.

The LVK Collaboration is an international consortium of scientists from hundreds of universities and institutes worldwide. This collaboration combines data from the Laser Interferometer Gravitational-Wave Observatory’s (LIGO) twin observatories, the Virgo Observatory, and the Kamioka Gravitational Wave Detector (KAGRA). The preprint of the paper, “Search for continuous gravitational waves from known pulsars in the first part of the fourth LIGO-Virgo-KAGRA observing run,” recently appeared online.

Emily Simpson has loved space since she was a 10-year-old kid celebrating her birthday at a planetarium. Now a recent Florida Tech graduate, she leaves with not only a dual degree in planetary science and astronomy and astrophysics but with published research, too. She mapped our solar system’s “alternate fate” had it housed an extra planet between Mars and Jupiter instead of the existing asteroid belt.

Simpson’s paper, “How might a planet between Mars and Jupiter influence the inner solar system? Effects on , obliquity, and eccentricity,” was published in Icarus, a journal devoted to the publication of research around solar system studies. It was co-authored by her advisor, assistant professor of Howard Chen.

They developed a 3D model that simulates how the solar system’s orbital architecture may have evolved differently with the formation of a planet that is at least twice the size of Earth’s mass—a super-Earth—instead of an asteroid belt.

A supermassive black hole in a distant galaxy is rewriting the rules of astrophysics, with unprecedented activity that has left astronomers around the world both fascinated and perplexed. Plasma jets traveling at record-breaking speeds and rapid X-ray fluctuations near the event horizon are just some of the strange phenomena observed in real time. What secrets is this cosmic behemoth revealing, and how might it reshape our understanding of black holes?