Toggle light / dark theme

Could help determine which patients are likely to benefit from new Alzheimer’s drugs. A newly developed blood test for Alzheimer’s disease not only aids in the diagnosis of the neurodegenerative condition but also indicates how far it has progressed, according to a study by researchers at Washington University School of Medicine in St. Louis and Lund University in Sweden.

Several blood tests for Alzheimer’s disease are already clinically available, including two based on technology licensed from WashU. Such tests help doctors diagnose the disease in people with cognitive symptoms, but do not indicate the clinical stage of the disease symptoms — that is, the degree of impairment in thinking or memory due to Alzheimer’s dementia. Current Alzheimer’s therapies are most effective in early stages of the disease, so having a relatively easy and reliable way to gauge how far the disease has progressed could help doctors determine which patients are likely to benefit from drug treatment and to what extent. The new test can also provide insight on whether a person’s symptoms are likely due to Alzheimer’s versus some other cause.

The study is published March 31 in Nature Medicine.

A study from MLU found that brain stimulation using tDCS can slightly influence decision speed and flexibility, though its effects are subtle and context-dependent. A new study from Martin Luther University Halle-Wittenberg (MLU), published in the Journal of Cognitive Neuroscience, has found that

A new USC study suggests that gut imbalances in children with autism may create an imbalance of metabolites in the digestive system—ultimately disrupting neurotransmitter production and influencing behavioral symptoms.

The research, published in Nature Communications, adds to a growing body of science implicating the “gut-brain” axis in . The discovery raises the possibility of new treatment avenues. It’s an example of how research at USC, and other universities, drives innovation and leads to discoveries that improve lives.

“We demonstrated that gut metabolites impact the brain, and the brain, in turn, affects behavior. Essentially, the brain acts as the intermediary between gut health and autism-related behaviors,” said first author Lisa Aziz-Zadeh, a professor at the Brain and Creativity Institute at the USC Dornsife College of Letters, Arts and Sciences.

Our brain’s ability to absorb fresh information — whether that means mastering a new task at work, memorizing the refrain of a song, or navigating unfamiliar streets — depends on a remarkable talent for neural self‑reinvention.

Every time we practice something novel, millions of tiny contacts between nerve cells subtly adjust their strength and neurons use multiple mechanisms to store knowledge.

Some connections, called synapses, amplify their signals to stamp in crucial details; others turn down the volume to clear away noise. Collectively these shifts are known as synaptic plasticity and for decades neuroscientists have cataloged dozens of molecular pathways that can nudge a synapse up or down.